如何从二项分布中抽取样本 - binomial

binomial是从从二项分布中抽取样本。

这里尝试通过numpy.random.binomial从二项分布中抽取样本。

所用示例参考和修改自网络资料。

1 binomial定义

1.1 binomial公式定义

二项分布的概率质量函数 (PMF) 为

其中n是试验次数, p是成功概率, N是成功次数。

1.2 binomial适用场景

假设,p = 总体比例估计值,n = 样本数量,示例如下。

例如,一个包含 15 人的样本显示有 4 人是左撇子,11 人是右撇子。那么 p = 4/15 = 27%。

在使用随机样本估计总体比例估计值的标准误差时,一般情况会选择使用正态分布。

然而,如果当p*n <= 5,即总体比例估计值过小,这种情况下应该使用二项分布。

比如在上述例子中

p = 4/15 = 27%。0.27*15 = 4 < 5

因此在这种情况下应使用二项分布。

https://numpy.net.cn/doc/stable/reference/random/generated/numpy.random.binomial.html

2 binomial示例

这里通过python程序示例binomial的抽样估计过程。

2.1 分布中抽样

通过np.random.binomial,从分布中抽取样本。

假设每次抽样命中概率为p=0.5,重复n次估计,一共进行1000次抽样。

示例程序如下

n, p = 10, 0.5 # number of trials, probability of each trial

s = np.random.binomial(n, p, 1000)

result of flipping a coin 10 times, tested 1000 times.

2.2 抽样应用解析

这里给定一个真实的例子,描述如下。

一家公司钻探了 9 口探井,每口井的成功概率估计为 0.1。

所有九口井都失败了,这种情况发生的概率是多少?

计算程序如下所示

复制代码
sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
# answer = 0.38885, or 38%.

这里详细分步分析计算过程。

1)进行 20,000 次模型试验,示例如下

每次模型试验独立重复9次,单次命中概率0.1

整体进行20000次模型试验

np.random.binomial(9, 0.1, 20000)

输出如下

array([0, 1, ..., 4])

2)产生零个阳性结果,即九口井都失败了的次数

np.random.binomial(9, 0.1, 20000) == 0

输出

输出示例如下,由于是重新运行,所以数值和1)中输出的数值会不一致。

array([False, False, ..., False])

3)计算产生零个阳性结果的次数

sum(np.random.binomial(9, 0.1, 20000)==0)

输出如下,具体过程为

如果本次试验产生了0个阳性样本,则+1记录,然后继续检查统计下次试验。

np.int64(7735)

4)计算0阳性样本发生的概率

sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.

输出如下,即为9次打井试验中0阳性发生的概率。

np.float64(0.38625)

reference


numpy.random.binomial

https://numpy.net.cn/doc/stable/reference/random/generated/numpy.random.binomial.html

如何用python模拟pass@k过程

https://blog.csdn.net/liliang199/article/details/155397143

相关推荐
开源技术1 天前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱1 天前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟1 天前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学1 天前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19821 天前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮1 天前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手1 天前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋1 天前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-1 天前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView1 天前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能