二维前缀和妙用:快速检测边框正方形

求解思路

这道题的核心是枚举所有可能的正方形,然后快速判断其边框是否全为1。

我们首先把原始矩阵转换成二维前缀和数组,这样就能在O(1)时间内计算任意矩形区域内1的个数。

接下来枚举每个可能的左上角点,从已知的最大边长开始向外扩展,对于每个候选正方形,我们计算整个正方形区域的1的个数,再减去内部正方形的1的个数,如果结果等于4条边上应有的格子数(即4×(边长-1)),就说明边框全是1,此时更新答案。

这种方法的巧妙之处在于利用前缀和避免了逐个检查边框元素,同时通过从已知答案开始扩展,减少了不必要的计算。

代码实现

java 复制代码
public static int largest1BorderedSquare(int[][] g) {
    int n = g.length;
    int m = g[0].length;
    build(n, m, g);
    
    // 特判:矩阵全是0
    if (sum(g, 0, 0, n - 1, m - 1) == 0) {
        return 0;
    }
    
    int ans = 1;
    for (int a = 0; a < n; a++) {
        for (int b = 0; b < m; b++) {
            // 枚举左上角(a,b),从当前最大边长+1开始尝试
            for (int c = a + ans, d = b + ans, k = ans + 1; 
                 c < n && d < m; c++, d++, k++) {
                // 边框1的个数 = 整个正方形的1 - 内部正方形的1
                if (sum(g, a, b, c, d) - sum(g, a + 1, b + 1, c - 1, d - 1) 
                    == (k - 1) << 2) {
                    ans = k;
                }
            }
        }
    }
    return ans * ans;
}

// 构建二维前缀和数组
public static void build(int n, int m, int[][] g) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            g[i][j] += get(g, i, j - 1) + get(g, i - 1, j) 
                     - get(g, i - 1, j - 1);
        }
    }
}

// 查询矩形区域和
public static int sum(int[][] g, int a, int b, int c, int d) {
    return a > c ? 0 : (g[c][d] - get(g, c, b - 1) 
                       - get(g, a - 1, d) + get(g, a - 1, b - 1));
}

// 安全获取值
public static int get(int[][] g, int i, int j) {
    return (i < 0 || j < 0) ? 0 : g[i][j];
}

如果觉得有帮助,欢迎点赞、关注、转发~

相关推荐
qq_336313936 小时前
java基础-IO流(网络爬虫/工具包生成假数据)
java·爬虫·php
桦说编程6 小时前
滑动窗口限流器的演进之路:从调度器实现到 Packed CAS
java·后端·性能优化
开开心心_Every7 小时前
安卓后台录像APP:息屏录存片段,行车用
java·服务器·前端·学习·eclipse·edge·powerpoint
初次攀爬者7 小时前
SpringBoot 整合 JWT + Redis 实现登录鉴权
java·redis·后端
悦悦妍妍7 小时前
spring-ioc
java
Jasmine_llq7 小时前
《CF280C Game on Tree》
数据结构·算法·邻接表·深度优先搜索(dfs)·树的遍历 + 线性累加统计
小棠师姐7 小时前
支持向量机(SVM)入门:超平面与核函数的通俗解释
算法·python机器学习·支持向量机svm·超平面可视化·核函数应用
佛系打工仔7 小时前
绘制K线第一章:可见区间处理
java
wangkay888 小时前
【Java 转运营】Day02:抖音直播间流量底层逻辑全解析
java·新媒体运营