平面诱导单应性矩阵
用标准针孔模型,参考相机为 P1=K1[I∣0]P_1 = K_1[I\mid 0]P1=K1[I∣0],目标相机为 P2=K2[R∣t]P_2 = K_2[R\mid t]P2=K2[R∣t],平面方程在参考相机坐标系里是 N_c\^\\top X + d = 0 :
-
像素到参考相机坐标:X=Z K1−1x1X = Z\,K_1^{-1} x_1X=ZK1−1x1,其中 x1=[u1,v1,1]⊤x_1 = [u_1,v_1,1]^\topx1=[u1,v1,1]⊤。
-
把 XXX 代入平面方程,解出该点的深度:
Nc⊤(ZK1−1x1)+d=0 ⇒ Z=−dNc⊤K1−1x1. N_c^\top (Z K_1^{-1} x_1) + d = 0 \;\Rightarrow\; Z = -\frac{d}{N_c^\top K_1^{-1} x_1}. Nc⊤(ZK1−1x1)+d=0⇒Z=−Nc⊤K1−1x1d.也即 X=−dNc⊤K1−1x1 K1−1x1X = -\dfrac{d}{N_c^\top K_1^{-1} x_1}\,K_1^{-1}x_1X=−Nc⊤K1−1x1dK1−1x1。
-
投到目标相机:x2∼K2 (RX+t)x_2 \sim K_2\,(R X + t)x2∼K2(RX+t)。代入上面的 XXX:
x2∼K2 (R(−dNc⊤K1−1x1K1−1x1)+t)=K2 (−dNc⊤K1−1x1RK1−1x1+t). x_2 \sim K_2\!\left(R \Bigl(-\frac{d}{N_c^\top K_1^{-1} x_1}K_1^{-1}x_1\Bigr) + t\right) = K_2\!\left(-\frac{d}{N_c^\top K_1^{-1} x_1} R K_1^{-1}x_1 + t\right). x2∼K2(R(−Nc⊤K1−1x1dK1−1x1)+t)=K2(−Nc⊤K1−1x1dRK1−1x1+t). -
提取分母并合并到矩阵右乘:
x2∼K2(R−t Nc⊤d)K1−1x1. x_2 \sim K_2 \left(R - \frac{t\,N_c^\top}{d}\right) K_1^{-1} x_1. x2∼K2(R−dtNc⊤)K1−1x1.这就得到平面诱导单应矩阵
H=K2(R−t Nc⊤d)K1−1, H = K_2 \left( R - \frac{t\,N_c^\top}{d} \right) K_1^{-1},H=K2(R−dtNc⊤)K1−1,使得x2∼Hx1x_2 \sim H x_1x2∼Hx1 (同一平面上对应点的像素齐次坐标)