平面诱导单应性矩阵

平面诱导单应性矩阵

用标准针孔模型,参考相机为 P1=K1[I∣0]P_1 = K_1[I\mid 0]P1=K1[I∣0],目标相机为 P2=K2[R∣t]P_2 = K_2[R\mid t]P2=K2[R∣t],平面方程在参考相机坐标系里是 N_c\^\\top X + d = 0

  • 像素到参考相机坐标:X=Z K1−1x1X = Z\,K_1^{-1} x_1X=ZK1−1x1,其中 x1=[u1,v1,1]⊤x_1 = [u_1,v_1,1]^\topx1=[u1,v1,1]⊤。

  • 把 XXX 代入平面方程,解出该点的深度:
    Nc⊤(ZK1−1x1)+d=0  ⇒  Z=−dNc⊤K1−1x1. N_c^\top (Z K_1^{-1} x_1) + d = 0 \;\Rightarrow\; Z = -\frac{d}{N_c^\top K_1^{-1} x_1}. Nc⊤(ZK1−1x1)+d=0⇒Z=−Nc⊤K1−1x1d.

    也即 X=−dNc⊤K1−1x1 K1−1x1X = -\dfrac{d}{N_c^\top K_1^{-1} x_1}\,K_1^{-1}x_1X=−Nc⊤K1−1x1dK1−1x1。

  • 投到目标相机:x2∼K2 (RX+t)x_2 \sim K_2\,(R X + t)x2∼K2(RX+t)。代入上面的 XXX:
    x2∼K2 ⁣(R(−dNc⊤K1−1x1K1−1x1)+t)=K2 ⁣(−dNc⊤K1−1x1RK1−1x1+t). x_2 \sim K_2\!\left(R \Bigl(-\frac{d}{N_c^\top K_1^{-1} x_1}K_1^{-1}x_1\Bigr) + t\right) = K_2\!\left(-\frac{d}{N_c^\top K_1^{-1} x_1} R K_1^{-1}x_1 + t\right). x2∼K2(R(−Nc⊤K1−1x1dK1−1x1)+t)=K2(−Nc⊤K1−1x1dRK1−1x1+t).

  • 提取分母并合并到矩阵右乘:
    x2∼K2(R−t Nc⊤d)K1−1x1. x_2 \sim K_2 \left(R - \frac{t\,N_c^\top}{d}\right) K_1^{-1} x_1. x2∼K2(R−dtNc⊤)K1−1x1.

    这就得到平面诱导单应矩阵
    H=K2(R−t Nc⊤d)K1−1, H = K_2 \left( R - \frac{t\,N_c^\top}{d} \right) K_1^{-1},H=K2(R−dtNc⊤)K1−1,

    使得x2∼Hx1x_2 \sim H x_1x2∼Hx1 (同一平面上对应点的像素齐次坐标)

相关推荐
qq_4335545417 分钟前
C++ 状压DP(01矩阵约束问题)
c++·算法·矩阵
iAkuya1 天前
(leetcode)力扣100 21搜索二维矩阵2(z型搜索)
linux·leetcode·矩阵
CreasyChan1 天前
数学基础-矩阵与变换
线性代数·矩阵
com_4sapi1 天前
2026年矩阵系统三家优质服务商可靠支撑
线性代数·矩阵
会编程是什么感觉...1 天前
算法 - FOC
线性代数·算法·矩阵·无刷电机
MicroTech20251 天前
MLGO微算法科技发布改进量子ODE算法,支持不可对角化矩阵与非齐次系统实现指数级误差优化
科技·算法·矩阵
不解风水2 天前
【教程笔记】KalmanFilter
笔记·学习·算法·矩阵·ekf
Ccjf酷儿2 天前
计算机网络 (郑烇) 4 网络层:数据平面
网络·计算机网络·平面
徐行tag2 天前
平面运动模型下的特性及应用
数码相机·平面·slam
CreasyChan2 天前
unity矩阵与变换 - “空间转换的魔术”
unity·矩阵·c#·游戏引擎