贪心算法+动态规划

动规是由前一个状态推导出来的,而贪心是局部直接选最优的。

对于动态规划问题可以拆解成以下五步曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组
背包问题

二维dp数组

横轴表示物品编号,纵轴表示背包的重量

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。

  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

dp[j]容量为j的背包所能装的最大重量

一维dp数组递推公式dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

目标和

要使表达式结果为target,既然为target,那么就一定有 left组合 - right组合 = target。left + right = sum,而sum是固定的。right = sum - left。left - (sum - left) = target 推导出 left = (target + sum)/2 。target是固定的,sum是固定的,left就可以求出来。此时问题就是在集合nums中找出和为left的组合

完全背包

递推公式:dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i]);

  • 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。

  • 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

相关推荐
你撅嘴真丑3 小时前
第九章-数字三角形
算法
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder3 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮3 小时前
AI 视觉连载1:像素
算法
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
孞㐑¥5 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风5 小时前
代码随想录第十五天
数据结构·算法·leetcode
XX風5 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT065 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法
代码游侠6 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法