flink有状态计算中状态的分类

在 Apache Flink 的状态计算中,状态主要分为以下两类:

1. Keyed State

  • 定义:与特定键(Key)关联的状态,每个键独立维护其状态数据。
  • 特点
    • 作用域为当前键,不同键的状态互不影响。
    • 仅能在 KeyedStream 的函数(如 map()flatMap())中访问。
  • 存储结构
    • ValueState<T>:存储单值,例如: \\text{计数器}
    • ListState<T>:存储列表,例如: \\text{窗口内事件列表}
    • MapState<K, V>:存储键值对,例如: \\text{用户行为映射表}
    • ReducingState<T>:聚合状态(已弃用,推荐用 AggregatingState

2. Operator State

  • 定义:与算子实例(Operator Instance)绑定的状态,不依赖数据键。
  • 特点
    • 作用域为整个算子,所有输入数据共享同一状态。
    • 可在非 KeyedStream 的算子(如 SourceSink)中使用。
  • 存储结构
    • ListState<T>:用于存储列表形式的状态(如 Kafka 偏移量)。
    • BroadcastState<K, V>:用于广播状态至下游所有并行实例。

核心区别

特性 Keyed State Operator State
作用域 按键分区 算子实例级
访问限制 仅限相同键的数据 所有输入数据均可访问
典型应用 窗口聚合、状态机(如 CEP) 全局配置、源/接收器状态

状态作用域示意图

\\begin{array}{c\|c} \\text{Keyed State} \& \\text{Operator State} \\ \\hline \\begin{array}{c} \\text{Key=1} \\ \\downarrow \\ \\text{State A} \\ \\end{array} \& \\begin{array}{c} \\text{Operator} \\ \\downarrow \\ \\text{Global State} \\ \\end{array} \\ \\begin{array}{c} \\text{Key=2} \\ \\downarrow \\ \\text{State B} \\ \\end{array} \& \\end{array}

最佳实践

  • Keyed State:适用于需要分区隔离的场景(如用户会话分析)。
  • Operator State:适用于全局状态管理(如动态规则更新)。

通过合理选择状态类型,可优化资源利用并保障计算一致性。

相关推荐
龙亘川1 天前
政务数据治理实践:从架构搭建到价值释放的全流程探索
大数据·政务数据之道》白皮书·政务数据治理
历程里程碑1 天前
普通数组----最大子数组和
大数据·算法·elasticsearch·搜索引擎·排序算法·哈希算法·散列表
五度易链-区域产业数字化管理平台1 天前
「五度易链」行业标准信息数据库简介
大数据·数据库
数研小生1 天前
关键词搜索京东列表API技术对接指南
大数据·数据库·爬虫
星辰_mya1 天前
Elasticsearch之下
大数据·elasticsearch·搜索引擎
2601_948374571 天前
商用电子秤怎么选
大数据·python
jdyzzy1 天前
什么是 JIT 精益生产模式?它与传统的生产管控方式有何不同?
java·大数据·人工智能·jit
Elastic 中国社区官方博客1 天前
跳过 MLOps:通过 Cloud Connect 使用 EIS 为自管理 Elasticsearch 提供托管云推理
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
数研小生1 天前
1688商品列表API:高效触达批发电商海量商品数据的技术方案
大数据·python·算法·信息可视化·json
dingzd951 天前
AI 代理购物落地后,真正的“增量岗位”叫——商品数据工程
大数据·人工智能·跨境电商·内容营销·跨境