线代第二章矩阵第三课:矩阵乘法

矩阵乘法

矩阵乘法是矩阵运算中最核心且规则特殊的运算,与普通数的乘法差异较大,其结果是一个新矩阵,且有严格的运算前提。

一、 运算前提:矩阵的行列匹配

只有当第一个矩阵的列数 等于第二个矩阵的行数时,两个矩阵才能相乘。设矩阵 A 是 m×s 矩阵,矩阵 B 是 s×n 矩阵,则乘积 AB 是一个 m×n 矩阵。简单记为:(m×s)×(s×n)=(m×n)

注:若 A 的列数 ≠ B 的行数,则 AB 无意义。

二、 定义:元素的计算规则

,乘积 ,其中第 i 行第 k 列的元素 的计算公式为:

通俗理解:C 的元素 ​ 是 A 的第 i 行 与 B 的第 k 列对应元素相乘后求和(即 "行乘列" 法则)。

三、 示例

1. 二阶方阵 × 二阶方阵

已知

因此

2. 非方阵乘法(2×3 矩阵 × 3×2 矩阵)

已知

A 是 2×3,B 是 3×2,乘积 AB 是 2×2 矩阵:

四、 矩阵乘法的核心性质

矩阵乘法与数的乘法有明显区别,以下是关键性质:

  1. 不满足交换律 :一般情况下
    • 可能 AB 有意义,但 BA 无意义(如 2×3 矩阵 × 3×2 矩阵,AB 是 2×2,BA 是 3×3);
    • 即使 AB 和 BA 都有意义,结果也可能不同(如上述二阶方阵示例,可自行计算 BA 验证)。
  2. 满足结合律:(AB)C=A(BC)(前提是运算有意义)
  3. 满足分配律
    • 左分配律:A(B+C)=AB+AC
    • 右分配律:(B+C)A=BA+CA
  4. 数乘结合律(k 为常数)
  5. 单位矩阵的作用 :对任意 m×n 矩阵 A,有 (E 为单位矩阵)
  6. 零矩阵的作用 :若 A 是 m×s 矩阵,O 是 s×n 零矩阵,则 ;反之同理。
  7. 注意:AB=O⇏A=O 或 B=O,例如:

AB=O 但 A,B 都不是零矩阵

五、 特殊情况:方阵的幂

若 A 是 n 阶方阵,则可定义 A 的幂:

相关推荐
种时光的人6 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_10 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙16 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗16 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
劈星斩月18 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央19 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ1 天前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink2 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵