线代第二章矩阵第三课:矩阵乘法

矩阵乘法

矩阵乘法是矩阵运算中最核心且规则特殊的运算,与普通数的乘法差异较大,其结果是一个新矩阵,且有严格的运算前提。

一、 运算前提:矩阵的行列匹配

只有当第一个矩阵的列数 等于第二个矩阵的行数时,两个矩阵才能相乘。设矩阵 A 是 m×s 矩阵,矩阵 B 是 s×n 矩阵,则乘积 AB 是一个 m×n 矩阵。简单记为:(m×s)×(s×n)=(m×n)

注:若 A 的列数 ≠ B 的行数,则 AB 无意义。

二、 定义:元素的计算规则

,乘积 ,其中第 i 行第 k 列的元素 的计算公式为:

通俗理解:C 的元素 ​ 是 A 的第 i 行 与 B 的第 k 列对应元素相乘后求和(即 "行乘列" 法则)。

三、 示例

1. 二阶方阵 × 二阶方阵

已知

因此

2. 非方阵乘法(2×3 矩阵 × 3×2 矩阵)

已知

A 是 2×3,B 是 3×2,乘积 AB 是 2×2 矩阵:

四、 矩阵乘法的核心性质

矩阵乘法与数的乘法有明显区别,以下是关键性质:

  1. 不满足交换律 :一般情况下
    • 可能 AB 有意义,但 BA 无意义(如 2×3 矩阵 × 3×2 矩阵,AB 是 2×2,BA 是 3×3);
    • 即使 AB 和 BA 都有意义,结果也可能不同(如上述二阶方阵示例,可自行计算 BA 验证)。
  2. 满足结合律:(AB)C=A(BC)(前提是运算有意义)
  3. 满足分配律
    • 左分配律:A(B+C)=AB+AC
    • 右分配律:(B+C)A=BA+CA
  4. 数乘结合律(k 为常数)
  5. 单位矩阵的作用 :对任意 m×n 矩阵 A,有 (E 为单位矩阵)
  6. 零矩阵的作用 :若 A 是 m×s 矩阵,O 是 s×n 零矩阵,则 ;反之同理。
  7. 注意:AB=O⇏A=O 或 B=O,例如:

AB=O 但 A,B 都不是零矩阵

五、 特殊情况:方阵的幂

若 A 是 n 阶方阵,则可定义 A 的幂:

相关推荐
知识在于积累1 小时前
在指定条件下获取布尔矩阵中的索引矩阵
矩阵·索引·布尔矩阵
wa的一声哭了4 小时前
矩阵分析 方阵幂级数与方阵函数
人工智能·python·线性代数·算法·自然语言处理·矩阵·django
wa的一声哭了4 小时前
矩阵分析 单元函数矩阵微积分和多元向量值的导数
linux·c语言·c++·线性代数·算法·矩阵·云计算
老歌老听老掉牙4 小时前
SymPy 中矩阵乘法的顺序与元素类型分析
python·矩阵·sympy
POLITE35 小时前
Leetcode 54.螺旋矩阵 JavaScript (Day 8)
javascript·leetcode·矩阵
鲨莎分不晴5 小时前
从“像素对”到“纹理感”:深度解析灰度共生矩阵 (GLCM)
线性代数·矩阵
轻微的风格艾丝凡6 小时前
模型拆解--Variable Inductance Modeling
线性代数·simulink
雾喔8 小时前
1970. 你能穿过矩阵的最后一天 + 今年总结
线性代数·算法·矩阵
AI科技星18 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
JinSu_1 天前
【学习体会】Eigen和GLM在矩阵初始化和底层数据存储的差异
线性代数·矩阵