【神经网络】反向传播BP算法

BP算法,即反向传播算法(Backpropagation Algorithm),是一种用于训练人工神经网络的监督学习算法。它是神经网络中最常用、最核心的学习算法之一,尤其在深度学习中扮演着基础角色。

一、核心思想

反向传播是误差反向传播算法的简称,它是用于训练人工神经网络(尤其是多层前馈网络)的最经典、最核心的算法。其核心思想是:

通过链式法则,计算神经网络中每个参数(权重和偏置)对于最终输出误差的"贡献"(即梯度),然后利用梯度下降法来更新这些参数,以最小化误差。

简单来说,它是一个高效的计算梯度的方法。

二、基本流程

BP算法主要包括两个阶段:

前向传播(Forward Propagation)

输入数据从输入层传入,经过隐藏层逐层计算,最终得到输出层的预测值。

每一层的输出作为下一层的输入,直到输出层。

反向传播(Backward Propagation)

计算输出层的预测值与真实值之间的误差(通常使用损失函数,如均方误差或交叉熵)。

将误差从输出层反向传播到隐藏层,计算每一层的梯度(即误差对权重和偏置的偏导数)。

使用梯度下降(或其变种)更新每一层的权重和偏置,以减小误差。

三、算法详细步骤

阶段一:前向传播

输入:从输入层传入样本数据。

计算:数据与权重相乘,加上偏置,通过激活函数(如Sigmoid, ReLU),逐层传递,直到得到输出层的预测值。

输出 :得到网络的预测输出

计算损失 :使用损失函数(如均方误差MSE、交叉熵)计算预测值 和真实标签 之间的误差

阶段二:反向传播

这是算法的精髓。目标是求出损失函数 每一个权重 每一个偏置 的偏导数(即梯度 )。

核心数学工具:链式法则

假设一个简单的三层网络(输入-隐藏-输出),对于连接隐藏层神经元 到输出层神经元 的权重

1.计算输出层梯度

2.计算隐藏层梯度(反向传播的关键):

3.参数更新(梯度下降):

4.算法的意义与优势

  • 高效性 :与直接对每个参数进行数值微分(微小扰动求变化)相比,反向传播利用链式法则和矩阵运算,能一次性、高效地计算出所有参数的梯度,计算复杂度与一次前向传播相当。

  • 普适性:它是一个通用的框架,只要网络结构是可微的(即每一层的运算都可求导),无论有多少层,都可以通过链式法则层层反推。

  • 奠定了深度学习的基础:正是由于BP算法的存在,才使得训练具有数百万甚至数十亿参数的深层神经网络成为可能。

相关推荐
档案宝档案管理2 分钟前
一键对接OA/ERP/企业微信|档案宝实现业务与档案一体化管理
大数据·数据库·人工智能·档案·档案管理
yuanmenghao2 分钟前
MSAC 算法详解以及与 RANSAC 对比示例
算法·自动驾驶·聚类·ransac·msac·系统辨识‘
造夢先森3 分钟前
常见数据结构及算法
数据结构·算法·leetcode·贪心算法·动态规划
爱打代码的小林3 分钟前
机器学习基础(支持向量机SVM)
人工智能·机器学习·支持向量机
SmartBrain4 分钟前
解读:《华为变革法:打造可持续进步的组织》
大数据·人工智能·华为·语言模型
marteker6 分钟前
Snapchat 推出定制 AI 镜头功能
人工智能
小真zzz7 分钟前
2025最新!8款零成本AI PPT工具深度测评
人工智能·ai·powerpoint·ppt
renhongxia19 分钟前
一个多智能体Text2SQL框架,使用小语言模型和执行反馈
人工智能·语言模型·自然语言处理
学习3人组9 分钟前
目标检测模型选型决策树
人工智能·目标检测·决策树
启途AI9 分钟前
深度解析 | 集成Nano Banana Pro的ChatPPT,如何重新定义AI美化PPT的行业标杆?
人工智能·powerpoint·ppt