论文15 | 深度学习对功能性超声图像进行血管分割案例分析

大脑内的血管如同纵横交错的高速公路,动脉与静脉的血流方向恰似双向车道 ------ 动脉向下输送氧气,静脉向上回流代谢废物。若能实时监测这些 "车道" 的动态,对理解脑功能与疾病至关重要。

传统功能性超声(fUS)能以 100μm 的分辨率捕捉脑血流变化,但由于动静脉血流方向相反,在 fUS 中区分小动脉和小静脉颇具挑战性。而更高分辨率的超声定位显微术(ULM)虽能分辨血流方向,却需要注射微泡造影剂,且数据处理耗时,难以应用于实时监测。

法国里昂大学团队最新发表在《Computers in Biology and Medicine》的研究带来了突破性方案:用深度学习教会计算机自动分辨 fUS 图像中的血流方向。其核心创新在于:

① 以 ULM 为 "老师",自动生成注释

使用 Iconeus V1 超声成像仪器获取 ULM,利用 ULM(分辨率 2μm)获取的血流方向数据(向下为动脉,向上为静脉),通过阈值处理和尺寸筛选,自动生成 fUS 图像的注释标签,避免了繁琐的手动标注。

② UNet 架构升级,捕捉血管 "蛛丝马迹"

测试了 7 种 UNet 变种,从 fUS 图像中提取血管的空间特征与血流方向模式。

③ 仅用 100 帧数据,实现高效分割

传统方法需 3000 帧数据,而模型只需 100 帧 fUS 图像,就能达到 90% 的分割准确率。

ULM 模态

从 ULM 图像构建 fUS 注释

基于深度学习 fUS 图像血管分割结果及其对脑血流信号的解析

使用损失函数对 fUS 图像中向上血流(静脉)的分割预测示例

相关推荐
小鸡吃米…17 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫18 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)18 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan18 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维18 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS18 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd18 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟19 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然19 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~19 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1