LeetCode 3652: 按策略买卖股票的最佳时机

题目理解

给定价格数组 prices 和策略数组 strategy,策略可以是:

  • -1: 买入
  • 0: 持有
  • 1: 卖出

利润 = Σ(strategy[i] × prices[i])

我们可以进行最多一次修改:选择连续 k 个元素,前 k/2 个改为 0,后 k/2 个改为 1。

求最大可能利润。

解题思路

方法一:暴力枚举(朴素思路)

最直接的想法是枚举所有可能的修改位置:

  • 不修改的情况
  • 从索引 0, 1, 2, ..., n-k 开始修改

每次计算修改后的总利润,取最大值。

时间复杂度: O(n²) - 枚举 O(n) 个位置,每次重新计算总利润 O(n)

方法二:前缀和优化(推荐)

观察到暴力方法有大量重复计算。我们可以用前缀和优化。

核心思想

设原始利润为 base = Σ(strategy[i] × prices[i])

当我们修改从位置 i 开始的 k 个元素时:

复制代码
修改前: [i, i+1, ..., i+k/2-1, i+k/2, ..., i+k-1]
修改后: [     全部变成0      ][    全部变成1     ]

设:

  • p1 = i, p2 = i + k/2 - 1(前半部分,变成 0)
  • p3 = i + k/2, p4 = i + k - 1(后半部分,变成 1)

则:

  • 原利润在 [p1, p2] 区间: base1 = Σ(strategy[j] × prices[j]),修改后变为 0
  • 原利润在 [p3, p4] 区间: base2 = Σ(strategy[j] × prices[j]),修改后变为 Σprices[j]

关键公式

复制代码
新利润 = base - base1 - base2 + Σprices[p3~p4]

即:

复制代码
profit_diff = Σprices[p3~p4] - base1 - base2

只有当 profit_diff > 0 时,修改才能提升利润。

前缀和预处理

使用两个前缀和数组:

  1. prefixSums[i]: prices 的前缀和,用于快速计算价格区间和
  2. baseSums[i]: strategy[j] × prices[j] 的前缀和,用于快速计算原利润

这样每次查询区间和的时间从 O(k) 降到 O(1)。

时间复杂度: O(n) - 预处理 O(n),枚举 O(n) 个位置,每次 O(1) 计算

空间复杂度: O(n)

代码实现

go 复制代码
func maxProfit(prices []int, strategy []int, k int) int64 {
    n := len(prices)
    
    // 前缀和预处理
    prefixSums := make([]int64, n+1)  // prices 的前缀和
    baseSums := make([]int64, n+1)    // strategy[i]*prices[i] 的前缀和
    var base int64
    
    for i := 0; i < n; i++ {
        prefixSums[i+1] = prefixSums[i] + int64(prices[i])
        base += int64(strategy[i]) * int64(prices[i])
        baseSums[i+1] = baseSums[i] + int64(strategy[i])*int64(prices[i])
    }
    
    // 边界:k > n 时无法修改
    if k > n {
        return base
    }
    
    maxProfit := base
    
    // 枚举所有修改起点
    for i := 0; i <= n-k; i++ {
        p1 := i
        p2 := i + k/2 - 1
        p3 := i + k/2
        p4 := i + k - 1
        
        // 原利润中被修改部分的贡献
        base1 := baseSums[p2+1] - baseSums[p1]
        base2 := baseSums[p4+1] - baseSums[p3]
        
        // 修改后后半部分的贡献(全为1)
        priceSum := prefixSums[p4+1] - prefixSums[p3]
        
        // 新利润 = 原利润 - 被移除部分 + 新增部分
        profit := base - base1 - base2 + priceSum
        
        if profit > maxProfit {
            maxProfit = profit
        }
    }
    
    return maxProfit
}

示例演示

prices = [4,2,8], strategy = [-1,0,1], k = 2 为例:

预处理

  • base = (-1)×4 + 0×2 + 1×8 = 4
  • prefixSums = [0, 4, 6, 14]
  • baseSums = [0, -4, -4, 4]

枚举修改位置

  • i=0: 修改 [0,1] → [0,1,1]

    • base1 = baseSums[1] - baseSums[0] = -4
    • base2 = 0 (p3=p4+1)
    • priceSum = prefixSums[2] - prefixSums[1] = 2
    • profit = 4 - (-4) - 0 + 2 = 10
  • i=1: 修改 [1,2] → [-1,0,1] (无变化)

    • profit = 4

最大利润: 10

复杂度分析

  • 时间复杂度: O(n),其中 n 是数组长度
  • 空间复杂度: O(n),用于存储前缀和数组

总结

本题的关键是识别暴力枚举中的重复计算,通过前缀和实现 O(1) 的区间和查询,将时间复杂度从 O(n²) 优化到 O(n)。这是一个典型的「暴力→优化」的思维过程。

相关推荐
千金裘换酒16 小时前
LeetCode 移动零元素 快慢指针
算法·leetcode·职场和发展
wm104317 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
NAGNIP17 小时前
一文搞懂机器学习线性代数基础知识!
算法
NAGNIP17 小时前
机器学习入门概述一览
算法
iuu_star17 小时前
C语言数据结构-顺序查找、折半查找
c语言·数据结构·算法
Yzzz-F17 小时前
P1558 色板游戏 [线段树 + 二进制状态压缩 + 懒标记区间重置]
算法
漫随流水18 小时前
leetcode算法(515.在每个树行中找最大值)
数据结构·算法·leetcode·二叉树
mit6.82418 小时前
dfs|前后缀分解
算法
扫地的小何尚18 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
千金裘换酒20 小时前
LeetCode反转链表
算法·leetcode·链表