线性代数(六)列空间和零空间

前篇文章给出了向量子空间的的定义,本篇来进一步讨论一些形式的向量子空间。

取两个子空间P和L,P构成平面,L构成直线,讨论两种情况:

1.P和L的并集,能构成子空间吗?显然不能,因为P空间内的向量和L空间内的向量进行线性组合,结果未必都在P和L上

2.P和L的交集,能构成子空间吗?显然是可以的。P空间和L空间的交集上的向量进行线性组合,结果一定还在这个交集上。

下面讨论列空间。

给定矩阵,将其列向量做任意线性组合,将得到一个空间的子空间,称之为A的列向量空间。

将其和方程组结合起来解释,观察是否对任意b都有解?

,方程左侧可以看成对三个列向量进行任意线性组合,显然这种线性组合无法囊括整个思维空间,因此该方程并不是总有解。

那么b向量满足什么条件下,方程才有解呢?

显然我们可以给定x,来组合出b,这样是一定有解的,这等价于说当b向量是A中列向量的线性组合时,方程有解;或者说,b在A的列向量空间内,方程有解。

还可以观察到,矩阵A中的第三列等于第一列+第二列,因此实际上主列只有第一、二列;则矩阵A的列向量空间的一个二维子空间。

当b=0时,解的情况如何呢?

显然0向量是该方程的一个解。并且很容易看出,有解的情况还可以表示为:

显然可以通过张成一个空间的子空间,该子空间称为矩阵A的零空间。该子空间实际上是一条直线,且该空间满足对向量的数乘封闭和加法封闭。

继续讨论,如果当b不为0的情况,如:

那么此时方程的解还能张成子空间吗?显然不行,因为零向量不包含于解向量内,不满足定义子空间最基本的条件。此时所张成的"空间"实际上是一条挖掉了原点的直线。

相关推荐
式5163 小时前
线性代数(九)线性相关性、基与维数
线性代数·算法·机器学习
式5169 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
式5169 小时前
线性代数(七)主变量与特解
线性代数·算法
咚咚王者1 天前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数
醒过来摸鱼2 天前
空间直线方程
线性代数·概率论
测试人社区-小明2 天前
涂鸦板测试指南:从基础功能到用户体验的完整框架
人工智能·opencv·线性代数·微服务·矩阵·架构·ux
hweiyu002 天前
数据结构:矩阵
数据结构·线性代数·矩阵
拉姆哥的小屋2 天前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
咚咚王者2 天前
人工智能之数学基础 线性代数:第四章 矩阵分解
人工智能·线性代数·矩阵