LeetCode 面试经典 150_回溯_全排列(100_46_C++_中等)

LeetCode 面试经典 150_回溯_全排列(100_46_C++_中等)

题目描述:

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

输入输出样例:

示例 1:
输入 :nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:
输入 :nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:
输入 :nums = [1]
输出:[[1]]

提示:

1 <= nums.length <= 6

-10 <= nums[i] <= 10

nums 中的所有整数 互不相同

题解:

解题思路:

思路一(递归(回溯)):

1、这题需求全排列,这里我们可以想到数学上进行全排列的过程。假设求 [1,2,3] 的全排列。我们首先需在[1,2,3] 中,选取一个元素放在第一个位置,再在剩余两个元素中选取一个元素放在第二个位置,再将剩余的一个元素放在最后一个位置 。

⭕代表当前位置选取的元素,[ ]代表可选取元素

通过递归树可以分析出,每层会确定一个元素的位置,从上到下的一条路径正好是一个排列。(在此过程中我们需要记录哪些元素已被选取)

2、具体思路如下:

① 定义一个 used 用来存储当前元素是否被使用。定义一个 path 来存储从上到下的一条路径(正好是一个排列)。定义一个 ans 来存储所有的路径。

② 递归的每层确定一个元素的位置,且每层会列举所有未使用的元素。(每层挑选一个元素(未使用)存入path中,将使用的元素进行标记)。

③ 当path中元素的个数到达全排列的要求时,则将path存入 ans 中,再进行回溯(回溯时需将相应的元素置为未使用)。

3、复杂度分析

① 时间复杂度:O(n * n!),其中 n 是数组中的元素数量。其主要是递归调用的次数和将path复制到ans中的时间开销。递归调用消耗n!(全排列的个数),每个全排列答案复制到ans中消耗 n 时间 。

② 空间复杂度:O(n),其中 n 是数组中的元素数量。递归n层(每层确定一个元素的位置)O(n)。path存储从上到下的一条路径(正好是一个排列)O(n)。使用一个used数组存储元素是否被使用O(n)。

代码实现

代码实现(思路一(递归(回溯))):
cpp 复制代码
class Solution {
private:
    //用于存放一种排列
    vector<int> path;
    //用于存放所有全排列
    vector<vector<int>> res;
    //运用回溯算法求解全排列问题
    void backtracking(vector<int>&nums,vector<bool> &used){
        //递归出口(当path达到一个排列的个数时,也就是到达叶子节点时,记录答案)
        if(path.size()==nums.size()){
            res.emplace_back(path);
            return ;
        }
        //在每个位置枚举不用的元素
        for (int i = 0; i < nums.size(); i++)
        {
            //如果当前元素已经被使用则跳过此元素
            if(used[i]==true)continue;
            //若当前元素还未使用,则将其添加到一个排列中,标记已使用
            path.emplace_back(nums[i]);
            used[i]=true;
            //再重复的添加元素,直到一个排列的个数满足条件
            backtracking(nums,used);

            //将当前元素移除切换其他元素,移除后标记为未使用
            path.pop_back();
            used[i]=false;
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) {
        //标记元素是否被使用
        vector<bool> used(nums.size(),false);
        backtracking(nums,used);
        return res;
    }
};
以思路一为例进行调试
cpp 复制代码
#include<iostream>
#include<vector>
using namespace std;

class Solution {
private:
    //用于存放一种排列
    vector<int> path;
    //用于存放所有全排列
    vector<vector<int>> res;
    //运用回溯算法求解全排列问题
    void backtracking(vector<int>&nums,vector<bool> &used){
        //递归出口(当path达到一个排列的个数时,也就是到达叶子节点时,记录答案)
        if(path.size()==nums.size()){
            res.emplace_back(path);
            return ;
        }
        //在每个位置枚举不用的元素
        for (int i = 0; i < nums.size(); i++)
        {
            //如果当前元素已经被使用则跳过此元素
            if(used[i]==true)continue;
            //若当前元素还未使用,则将其添加到一个排列中,标记已使用
            path.emplace_back(nums[i]);
            used[i]=true;
            //再重复的添加元素,直到一个排列的个数满足条件
            backtracking(nums,used);

            //将当前元素移除切换其他元素,移除后标记为未使用
            path.pop_back();
            used[i]=false;
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) {
        //记录元素是否被使用
        vector<bool> used(nums.size(),false);
        backtracking(nums,used);
        return res;
    }
};

int main(){
    vector<int> a={1,2,3};

    //对a中的元素进行全排列
    Solution s;
    vector<vector<int>> results=s.permute(a);

    //输出全排列的结果
    for (auto &result : results)
    {
        cout<<"[";
        for (auto &i : result)
        {
            cout<<i<<"";
        }
        cout<<"]  ";
    }
        
    return 0;
}

LeetCode 面试经典 150_回溯_全排列(100_46)原题链接

欢迎大家和我沟通交流(✿◠‿◠)

相关推荐
DYS_房东的猫1 分钟前
写出第一个程序
c++
ulias2123 分钟前
AVL树的实现
开发语言·数据结构·c++·windows
黎雁·泠崖6 分钟前
二叉树知识体系全梳理:从基础到进阶一站式通关
c语言·数据结构·leetcode
山上三树6 分钟前
详细介绍 C/C++ 中的内存泄漏
c语言·c++
CSDN_RTKLIB13 分钟前
CMake构建目标核心命令
c++
郝学胜-神的一滴14 分钟前
图形学中的纹理映射问题:摩尔纹与毛刺的深度解析
c++·程序人生·unity·游戏引擎·图形渲染·unreal engine
Cx330❀33 分钟前
【优选算法必刷100题】第43题(模拟):数青蛙
c++·算法·leetcode·面试
闻缺陷则喜何志丹33 分钟前
【C++动态规划 状压dp】1879. 两个数组最小的异或值之和|2145
c++·算法·动态规划·力扣·数组·最小·动态规范
艾莉丝努力练剑38 分钟前
【优选算法必刷100题:专题五】(位运算算法)第033~38题:判断字符是否唯一、丢失的数字、两整数之和、只出现一次的数字 II、消失的两个数字
java·大数据·运维·c++·人工智能·算法·位运算
释怀°Believe1 小时前
Daily算法刷题【面试经典150题-7️⃣位运算/数学/】
算法·面试·职场和发展