AlignGuard-LoRA:一种结合了高效微调和安全保护的新正则化方法

总结

低秩自适应性(LoRA)被广泛用于微调大型语言模型,其优点是效率高、计算资源少。

但与此同时,它也存在一个明显的问题,那就是破坏了 "对齐",而 "对齐 "是为了维护安全性和道德约束。

具体来说,会出现毒性声明增加、过度拒绝和偏差恶化等情况,从而降低模型的可靠性。

AlignGuard-LoRA 通过使用费雪信息矩阵进行正则化来控制对齐敏感的方向,从而实现任务适应和安全保护。

此外,它还利用特定任务的正则化来稳定更新,并通过引入基于黎曼几何和大地距离的 "避免碰撞正则化",从几何角度将对齐相关更新与任务相关更新分离开来。

经证明,与传统的 LoRA 相比,所提出的方法可实现高达 50%的漂移抑制,同时提高了安全性和性能。

拟议方法

AlignGuard-LoRA 的结构是将 LoRA 的低秩更新分解为 "对齐相关部分 "和 "任务特定部分",并对每个部分应用不同的正则化。

首先,添加基于费雪信息矩阵的惩罚,以抑制对齐敏感方向上的过度更新。

这使得剔除精度和毒性控制等安全行为更容易保持。

接下来,针对特定任务组件引入了 "信任域正则化",以稳定低熵域的学习。

最重要的是 "避免碰撞正则化"。

它结合了黎曼距离的每坐标干扰抑制和大地距离的几何方向分离,以防止对齐和任务更新之间的干扰。

这三种正则方法相辅相成,旨在将任务适应性和安全性结合起来。

它们缓解了传统 LoRA 中的权衡问题,即通过降低安全性来换取任务准确性的提高,并允许在保持低等级和高效学习的同时,进行不干扰对齐的微调。

实验

实验比较了标准 LoRA、提议的 AlignGuard-LoRA 以及使用 LLaMA 3 (7B) 模型对所有参数进行的全面微调。

评估指标包括一般任务(如 GLUE 和 SuperGLUE)、安全性和鲁棒性基准(如 HELM 和 AdvGLUE)以及毒性(RealToxicityPrompts)、拒绝行为(OR-Bench)和偏差(CrowS-Pairs, BBQ)。使用了多方面的标准。

结果,与标准 LoRA 相比,AlignGuard-LoRA 大幅减少了毒性和偏差,并保持了排斥的准确性。

特别是完整版,在增加了避免碰撞正则化后,其性能与完全微调版相当,甚至更好,同时还保持了其在安全指标方面的优势。

顺序消融实验也证实,基于费舍尔的正则化、特定任务正则化和避免碰撞正则化各自有效,将它们结合在一起会产生协同效应。

此外,在一项名为 DRIFTCHECK 的新基准测试中,AlignGuard 的安全性能降低了 50%,证明了其作为安全关键领域微调方法的有效性。

相关推荐
invicinble4 小时前
对linux形成认识
linux·运维·服务器
技术路上的探险家4 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
半桔4 小时前
【IO多路转接】高并发服务器实战:Reactor 框架与 Epoll 机制的封装与设计逻辑
linux·运维·服务器·c++·io
绵绵细雨中的乡音4 小时前
深入理解 ET 与 LT 模式及其在 Reactor 模型中的应用
服务器·网络·php
HABuo5 小时前
【linux文件系统】磁盘结构&文件系统详谈
linux·运维·服务器·c语言·c++·ubuntu·centos
Howrun7775 小时前
关于Linux服务器的协作问题
linux·运维·服务器
yunfuuwqi7 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云7 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
代码游侠7 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
你真是饿了7 小时前
6.库制作与原理
linux·服务器