数据挖掘13

数据挖掘13--特征子集选择

一、为什么要选择特征?而不是用全部的特征?

1.去除冗余和噪声特征

有些特征之间高度相关(冗余),或者与目标完全无关(噪声)。保留它们不仅无益,反而有害。

例如:同时包含"年龄"和"出生年份"是冗余的。

2.减少过拟合

过多的无关或冗余特征会增加模型复杂度,使模型"记住"训练数据中的噪声,从而在新数据上泛化能力变差。

3.训练更快

特征越少,模型训练所需的时间和内存就越少。

4.增强模型可解释性

特征越少,越容易理解模型是如何做出决策的。

二、特征子集选择(Feature Subset Selection)

1.性质

(1)不生成新的特征,仅在原始特征构成的集合中选择部分特征构成子集

不同于主成分分析,主成分分析会对原始特征组合生成新的特征

(2)不改变特征的物理含义

比如"年龄"还是"年龄",不会变成"标准化后的年龄"或"年龄平方"。

特征的原始意义保持不变,容易理解和解释。

(3)与数据挖掘任务相关------相关特征包含对当前数据挖掘任务有用的信息

举个例子:如果你要预测一个人是否会贷款违约,那么"信用记录"很重要,"头发颜色"就不重要。

所以特征子集选择会优先保留那些和任务目标相关的特征。

相关推荐
山东小木4 小时前
A2UI:智能问数的界面构建策略
大数据·人工智能·jboltai·javaai·springboot ai·a2ui
认真学GIS4 小时前
逐3小时降水量!全国2421个气象站点1951-2024年逐3小时尺度长时间序列降水量(EXCEL格式)数据
人工智能·算法·机器学习
龙山云仓4 小时前
No098:黄道婆&AI:智能的工艺革新与技术传承
大数据·开发语言·人工智能·python·机器学习
LaughingZhu4 小时前
Product Hunt 每日热榜 | 2025-12-20
人工智能·经验分享·深度学习·神经网络·产品运营
love530love4 小时前
Win11+RTX3090 亲测 · ComfyUI Hunyuan3D 全程实录 ②:nvdiffrast 源码编译实战(CUDA 13.1 零降级)
人工智能·windows·python·github·nvdiffrast
————A4 小时前
强化学习---->多臂老虎机问题
人工智能
pingao1413784 小时前
从数据到预警:自动雨量监测站如何用科技解码暴雨密码
人工智能·科技
undsky_4 小时前
【n8n教程】:执行工作流——从手动测试到生产自动化
人工智能·ai·aigc·ai编程
牛客企业服务4 小时前
牛客AI面试蓝领案例:破解制造业招聘效率困局
人工智能·面试·职场和发展
oscar9994 小时前
深度学习测试题与解析
人工智能·深度学习·测试题