数据挖掘13

数据挖掘13--特征子集选择

一、为什么要选择特征?而不是用全部的特征?

1.去除冗余和噪声特征

有些特征之间高度相关(冗余),或者与目标完全无关(噪声)。保留它们不仅无益,反而有害。

例如:同时包含"年龄"和"出生年份"是冗余的。

2.减少过拟合

过多的无关或冗余特征会增加模型复杂度,使模型"记住"训练数据中的噪声,从而在新数据上泛化能力变差。

3.训练更快

特征越少,模型训练所需的时间和内存就越少。

4.增强模型可解释性

特征越少,越容易理解模型是如何做出决策的。

二、特征子集选择(Feature Subset Selection)

1.性质

(1)不生成新的特征,仅在原始特征构成的集合中选择部分特征构成子集

不同于主成分分析,主成分分析会对原始特征组合生成新的特征

(2)不改变特征的物理含义

比如"年龄"还是"年龄",不会变成"标准化后的年龄"或"年龄平方"。

特征的原始意义保持不变,容易理解和解释。

(3)与数据挖掘任务相关------相关特征包含对当前数据挖掘任务有用的信息

举个例子:如果你要预测一个人是否会贷款违约,那么"信用记录"很重要,"头发颜色"就不重要。

所以特征子集选择会优先保留那些和任务目标相关的特征。

相关推荐
是店小二呀8 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~9 小时前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记9 小时前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪9 小时前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能
victory04319 小时前
hello_agent第九章总结
人工智能·agent
骇城迷影9 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
AI资源库9 小时前
Remotion 一个用 React 程序化制作视频的框架
人工智能·语言模型·音视频
Web3VentureView9 小时前
SYNBO Protocol AMA回顾:下一个起点——什么将真正推动比特币重返10万美元?
大数据·人工智能·金融·web3·区块链
打破砂锅问到底0079 小时前
AI 驱动开发实战:10分钟从零构建「微信群相册」小程序
人工智能·微信·小程序·ai编程
老金带你玩AI9 小时前
CC本次更新最强的不是OPUS4.6,而是Agent Swarm(蜂群)
大数据·人工智能