LeetCode热题100--70. 爬楼梯--简单

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2

输出:2

解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入:n = 3

输出:3

解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

题解

java 复制代码
class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

解析

出自:画解算法:70. 爬楼梯

java 复制代码
class Solution  {   //定义一个新的解决方案类
    public int climbStairs(int n)  {   //通过一个整数输入参数n来爬楼梯
        int[] dp = new int[n + 1];     //初始化以存储子问题结果的DP数组。dp将用于存储不同的爬楼梯情况次数。我们需要这个数组来存储从0到'n'的每个索引上可能的爬楼梯方式数量
       dp[0] = 1;                  //有一种方式可以通过不迈步子(即在起点)到达终点。因此dp[0]初始化为1
       dp[1] = 1;                  //有两种方式可以通过一级台阶到达终点,每次迈一步或踏两步到第二级台阶(没有台阶的长度可供迈步)- 所以dp[1]也被初始化为1
       for(int i = 2; i <= n; i++) {   //从左到右开始计算不同步数所需的方式数量。在循环中'i'表示当前台阶的长度,我们基于先前状态dp[i - 1]和dp[i - 2]来通过迈一级或两级台阶计算可能的爬楼梯方式数量
          dp[i] = dp[i - 1] + dp[i - 2]; //每一步我们从最后的两个步数状态获取可能的方式,并将它们相加。所以在dp[i]位置上最终保存了所有过去组合后的总方式数量
			}
        return dp[n];
    }
}
相关推荐
仙俊红1 小时前
LeetCode487周赛T2,删除子数组后的最终元素
数据结构·算法
-dzk-7 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
风筝在晴天搁浅7 小时前
hot100 78.子集
java·算法
Jasmine_llq7 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
超级大只老咪7 小时前
快速进制转换
笔记·算法
m0_706653238 小时前
C++编译期数组操作
开发语言·c++·算法
故事和你918 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口
qq_423233908 小时前
C++与Python混合编程实战
开发语言·c++·算法
TracyCoder1238 小时前
LeetCode Hot100(19/100)——206. 反转链表
算法·leetcode
m0_715575348 小时前
分布式任务调度系统
开发语言·c++·算法