LeetCode热题100--70. 爬楼梯--简单

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2

输出:2

解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入:n = 3

输出:3

解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

题解

java 复制代码
class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

解析

出自:画解算法:70. 爬楼梯

java 复制代码
class Solution  {   //定义一个新的解决方案类
    public int climbStairs(int n)  {   //通过一个整数输入参数n来爬楼梯
        int[] dp = new int[n + 1];     //初始化以存储子问题结果的DP数组。dp将用于存储不同的爬楼梯情况次数。我们需要这个数组来存储从0到'n'的每个索引上可能的爬楼梯方式数量
       dp[0] = 1;                  //有一种方式可以通过不迈步子(即在起点)到达终点。因此dp[0]初始化为1
       dp[1] = 1;                  //有两种方式可以通过一级台阶到达终点,每次迈一步或踏两步到第二级台阶(没有台阶的长度可供迈步)- 所以dp[1]也被初始化为1
       for(int i = 2; i <= n; i++) {   //从左到右开始计算不同步数所需的方式数量。在循环中'i'表示当前台阶的长度,我们基于先前状态dp[i - 1]和dp[i - 2]来通过迈一级或两级台阶计算可能的爬楼梯方式数量
          dp[i] = dp[i - 1] + dp[i - 2]; //每一步我们从最后的两个步数状态获取可能的方式,并将它们相加。所以在dp[i]位置上最终保存了所有过去组合后的总方式数量
			}
        return dp[n];
    }
}
相关推荐
燃于AC之乐1 小时前
我的算法修炼之路--4 ———我和算法的爱恨情仇
算法·前缀和·贪心算法·背包问题·洛谷
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
独自破碎E7 小时前
【二分法】寻找峰值
算法
mit6.8247 小时前
位运算|拆分贪心
算法
ghie90908 小时前
基于MATLAB的TLBO算法优化实现与改进
开发语言·算法·matlab
恋爱绝缘体18 小时前
2020重学C++重构你的C++知识体系
java·开发语言·c++·算法·junit
wuk9988 小时前
VSC优化算法MATLAB实现
开发语言·算法·matlab
Z1Jxxx8 小时前
加密算法加密算法
开发语言·c++·算法
乌萨奇也要立志学C++8 小时前
【洛谷】递归初阶 三道经典递归算法题(汉诺塔 / 占卜 DIY/FBI 树)详解
数据结构·c++·算法
vyuvyucd9 小时前
C++引用:高效编程的别名利器
算法