题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
题解
java
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
解析
出自:画解算法:70. 爬楼梯
java
class Solution { //定义一个新的解决方案类
public int climbStairs(int n) { //通过一个整数输入参数n来爬楼梯
int[] dp = new int[n + 1]; //初始化以存储子问题结果的DP数组。dp将用于存储不同的爬楼梯情况次数。我们需要这个数组来存储从0到'n'的每个索引上可能的爬楼梯方式数量
dp[0] = 1; //有一种方式可以通过不迈步子(即在起点)到达终点。因此dp[0]初始化为1
dp[1] = 1; //有两种方式可以通过一级台阶到达终点,每次迈一步或踏两步到第二级台阶(没有台阶的长度可供迈步)- 所以dp[1]也被初始化为1
for(int i = 2; i <= n; i++) { //从左到右开始计算不同步数所需的方式数量。在循环中'i'表示当前台阶的长度,我们基于先前状态dp[i - 1]和dp[i - 2]来通过迈一级或两级台阶计算可能的爬楼梯方式数量
dp[i] = dp[i - 1] + dp[i - 2]; //每一步我们从最后的两个步数状态获取可能的方式,并将它们相加。所以在dp[i]位置上最终保存了所有过去组合后的总方式数量
}
return dp[n];
}
}