GA-RF遗传算法优化随机森林回归+SHAP分析+优化前后对比+新数据预测,MATLAB代码

MATLAB代码是一个基于GA(遗传算法)优化随机森林(Random Forest) 的回归预测+SHAP分析+优化前后对比+新数据预测。遗传算法(GA)属于群智能算法的一种。遗传算法是受自然进化理论启发的一系列搜索算法。通过模仿自然选择和繁殖的过程,遗传算法可以为涉及搜索,优化和学习的各种问题提供高质量的解决方案。同时,它们类似于自然进化,因此可以克服传统搜索和优化算法遇到的一些障碍,尤其是对于具有大量参数和复杂数学表示形式的问题。

一、研究背景

• 目的:通过智能优化算法(GA)自动调优随机森林的关键超参数,提升模型预测精度,并与未优化的随机森林进行对比。

• 适用场景:回归预测任务,适用于工程预测、金融分析、环境建模等领域。

二、主要功能

  1. 数据预处理:归一化、划分训练集/测试集。
  2. 参数优化:使用GA优化随机森林的:
    • 决策树数量
    • 最小叶子节点数
    • 最大分裂次数
  3. 模型训练与预测:构建优化与未优化随机森林模型。
  4. 性能评估:计算RMSE、R²、MAE等指标。
  5. 可视化分析:
    • 迭代曲线
    • 雷达图对比
    • 预测结果图、残差图、拟合图
    • 特征重要性排序
    • SHAP值分析
  6. 新数据预测:支持输入新数据进行预测并保存结果。
    三、算法步骤
  7. 导入数据并归一化。
  8. 划分训练集和测试集(可选是否打乱)。
  9. 使用GA优化随机森林超参数。
  10. 训练优化后的随机森林模型。
  11. 预测并反归一化得到实际值。
  12. 计算评估指标并绘制多种对比图。
  13. 进行新数据预测并输出结果。
  14. 计算SHAP值进行特征解释。
    四、技术路线
    数据准备 → 归一化 → 训练/测试划分 → GA参数优化 → 随机森林建模 →
    预测与反归一化 → 性能评估 → 可视化对比 → SHAP解释 → 新数据预测
    五、公式原理


















完整代码私信回复GA-RF遗传算法优化随机森林回归+SHAP分析+优化前后对比+新数据预测,MATLAB代码

相关推荐
机器学习之心3 天前
TCN-Transformer-LSTM组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码
深度学习·lstm·transformer·shap分析·tcn-transformer
机器学习之心3 天前
TCN-Transformer-BiLSTM组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码
深度学习·回归·transformer·shap分析·新数据预测
week_泽4 天前
随机森林样本权重的计算-弱学习器
学习·算法·随机森林
开开心心_Every6 天前
A3试卷分割工具:免费转为A4格式可离线
游戏·随机森林·微信·pdf·excel·语音识别·最小二乘法
开开心心_Every8 天前
时间自动校准工具:一键同步网络服务器时间
游戏·随机森林·微信·pdf·逻辑回归·excel·语音识别
2401_894828128 天前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
玖日大大11 天前
随机森林算法原理及实战代码解析
算法·随机森林·机器学习
Pyeako16 天前
机器学习--矿物数据清洗(六种填充方法)
人工智能·python·随机森林·机器学习·pycharm·线性回归·数据清洗
机器学习之心16 天前
GA-TCN-Transformer组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码
深度学习·回归·transformer·shap分析
千寻girling18 天前
Vue.js 前端开发实战 ( 电子版 ) —— 黑马
前端·javascript·vue.js·b树·决策树·随机森林·最小二乘法