推理过程的差异

在前面我们完整地讲解了训练过程的操作,建议可以先看看前文:
词嵌入和位置编码(超详细+图解)https://blog.csdn.net/Drise_/article/details/155502880?fromshare=blogdetail&sharetype=blogdetail&sharerId=155502880&sharerefer=PC&sharesource=Drise_&sharefrom=from_linkhttps://blog.csdn.net/Drise_/article/details/155502880?fromshare=blogdetail&sharetype=blogdetail&sharerId=155502880&sharerefer=PC&sharesource=Drise_&sharefrom=from_link

编码器详解(超详细+图解)https://blog.csdn.net/Drise_/article/details/155556414?fromshare=blogdetail&sharetype=blogdetail&sharerId=155556414&sharerefer=PC&sharesource=Drise_&sharefrom=from_link

解码器详解(训练过程)https://blog.csdn.net/Drise_/article/details/155804075?fromshare=blogdetail&sharetype=blogdetail&sharerId=155804075&sharerefer=PC&sharesource=Drise_&sharefrom=from_link

以下为***《Attention Is All You Need》*** 的transformer结构,本文会对解码器部分进行介绍:

训练过程的作用

之前我们对编码器和解码器在训练过程的操作进行了讲解,那么训练过程对模型有什么作用?

基于论文中的翻译任务,训练过程的作用那就是让模型学会从输入到输出的映射关系,通过优化参数使模型能够准确预测或生成目标序列,也就是让模型 "学会翻译"。

推理过程

推理过程与训练过程的差异

在推理过程的目的是通过源文本推理出目标文本,例如在中英文翻译在,源文本为 "I love you ",目标文本就是 我爱你。

那么推理过程与训练过程有什么相同之处和不同之处呢?

其实推理过程和训练过程大体是一样的,在训练过程我们在编码器部分输入源文本,在解码器部分输入源文本对应的目标文本,但是有两个地方的不同要关注到。

首先是在解码器的token预测的方式不同,在训练过程,从前文我们可以知道,经过一次编码器堆栈可以得到各个位置的目标token的概率,但是在Transformer推理时,必须经过多次解码器堆栈的前向传播,一次只能预测下一个token,也就是说,每次通过一整个解码器堆栈,只能生成一个token,token是串行推理生成的。
第二点是在解码器部分的输入训练和推理过程存在不同,在推理过程我们需要推理出目标文本,并不像训练过程一样存在一个目标文本的正确答案,所以在推理过程中解码器部分的输入是一个空文本,为了辨识开头,最终输入到解码器堆栈的实际上是一个只包含开始token,也就是只包含<s>的token序列。

如此沿用训练过程编码器和解码器**处理模式,**我们就可以推理得到每一个目标token,再转换为目标文本即可。

相关推荐
Robot侠3 小时前
多模态大语言模型(Multimodal LLM)技术实践指南
人工智能·语言模型·自然语言处理·transformer·rag·多模态大模型
AI即插即用6 小时前
即插即用系列 | 2025 RestorMixer:融合 CNN、Mamba 与 Transformer 的高效图像复原的集大成者!
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·transformer
小杨互联网6 小时前
时间序列预测实战:LSTM vs Transformer 在公共交通乘客量预测中的对比
人工智能·lstm·transformer
AI小怪兽18 小时前
RF-DETR:实时检测Transformer的神经架构搜索,首个突破 60 AP 的实时检测器 | ICLR 2026 in Submission
人工智能·深度学习·yolo·目标检测·架构·transformer
Yorelee.1 天前
ms-swift在训练时遇到的部分问题及解决方案
开发语言·nlp·transformer·swift
l木本I1 天前
星尘自研Lumo-1模型(mind to hand)详细解读
深度学习·机器学习·计算机视觉·transformer·美食
高洁011 天前
DNN案例一步步构建深层神经网络(3)
python·深度学习·算法·机器学习·transformer
free-elcmacom1 天前
机器学习高阶教程<7>Transformer原理全景解读:从“序列困境”到“注意力革命”
人工智能·python·机器学习·transformer
hopsky2 天前
经典Transformer的PyTorch实现
pytorch·深度学习·transformer