1小时微调 Gemma 3 270M 端侧模型与部署全流程

Gemma 3 270M是 Google 推出的一款虽小但能力惊人的开放模型。它属于 Gemma 家族,本质上是将 Gemini 模型中使用的相同技术带入了轻量级、可定制的形式中。

你可以在 不到一小时内完成微调,并将其大小压缩到 300MB 以下,让他直接在你的浏览器中运行。

在这篇文章中,我将展示我是如何使用 Gemma 创建我自己的 emoji 翻译器的------这是一个将文本转换为表情符号并在本地运行的小型模型。

第一步:教 Gemma "用 Emoji 思考"

Gemma 是一个通才。如果你让它把文本翻译成表情符号,它会表现得有点太客气了。

Prompt:

"Translate this text into emojis: what a fun party"

Model:

"Sure! Here is your emoji: 🥳🎉🎈"

这不完全是我想要的目标。对于我的应用我想要 只有表情符号------不要单词,不要"Sure!",只要有趣的东西。

所以我们可以对他进行微调

构建一个微型数据集

从一个简单的 JSON 文件开始------输入文本,输出表情符号。

复制代码
 [  
   { "input": "what a fun party", "output": "🥳🎉🎈" },  
   { "input": "good morning sunshine", "output": "☀️🌻😊" },  
   { "input": "so tired today", "output": "😴💤" }  
 ]

在 Colab 中微调

以前微调需要 A100 GPU 和时间,现在不需要了。使用 QLoRA(仅更新少量参数)在 Google Colab 的 免费 T4 GPU 上就可以微调。

复制代码
 from transformers import (  
    AutoModelForCausalLM,   
    AutoTokenizer,   
    Trainer,   
    TrainingArguments,   
    DataCollatorForLanguageModeling  
)  
from peft import LoraConfig, get_peft_model  
from datasets import load_dataset  

model_name = "google/gemma-3-270m"  
tokenizer = AutoTokenizer.from_pretrained(model_name)  

# 关键:为 Gemma 设置 pad_token  
if tokenizer.pad_token is None:  
    tokenizer.pad_token = tokenizer.eos_token  

model = AutoModelForCausalLM.from_pretrained(  
    model_name,   
    torch_dtype="auto",  # 可选:使用 auto dtype 以提高效率  
    device_map="auto"    # 可选:如果可用,自动映射到 GPU  
)  

dataset = load_dataset("json", data_files="emoji_dataset.json")  

# 可选:如果序列很长,进行预分词和截断(Trainer 可以处理原始文本,但这样更明确)  
# def tokenize_function(examples):  
#     return tokenizer(examples["text"], truncation=True, max_length=512)  
# dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)  

lora_config = LoraConfig(  
    r=8,   
    lora_alpha=32,   
    target_modules=[  
        "q_proj", "k_proj", "v_proj", "o_proj",  # Attention 层  
        "gate_proj", "up_proj", "down_proj"     # MLP 层  
    ],   
    lora_dropout=0.05,  
    task_type="CAUSAL_LM"  # 为了清晰起见显式指定  
)  
model = get_peft_model(model, lora_config)  

training_args = TrainingArguments(  
    output_dir="./gemma-emoji",  
    num_train_epochs=3,  
    per_device_train_batch_size=4,  
    save_steps=100,  
    logging_steps=10,      # 可选:更频繁地记录日志  
    evaluation_strategy="no",  # 如果你有 eval_dataset,请在此添加  
    # group_by_length=True,  # 可选:将相似长度分组以提高效率  
    # max_steps=-1,          # 可选:运行完整的 epoch  
)  

# 关键:适用于 CLM 的正确整理器 (collator)  
data_collator = DataCollatorForLanguageModeling(  
    tokenizer=tokenizer,   
    mlm=False  # 因果语言模型 (Causal LM),非掩码  
)  

trainer = Trainer(  
    model=model,   
    args=training_args,   
    train_dataset=dataset["train"],  
    tokenizer=tokenizer,       # 如果未预分词,则启用自动分词  
    data_collator=data_collator  
)  
 trainer.train()

就是这样,训练后模型可以只生成表情符号。

第二步:让它足够小以适应 Web

微调后s模型仍然约有 1GB,按 LLM 标准来看很小但对于浏览器来说还是很大。

为了在本地运行它,我使用 LiteRT 将其量化为 4-bit(如果你更喜欢 Transformers.js,也可以选择 ONNX)。

这个较小的版本非常适合 MediaPipe 或 Transformers.js,两者都利用 WebGPU 来访问你的设备硬件。所以是它实际上是在你的浏览器中运行的。

第三步:在浏览器中运行模型

有趣的部分来了------没有服务器,没有 API,无需等待。

使用 MediaPipe 的 GenAI Tasks 直接在浏览器中加载并运行模型。

复制代码
 const genai = await FilesetResolver.forGenAiTasks(  
  'https://cdn.jsdelivr.net/npm/@mediapipe/tasks-genai@latest/wasm'  
);  

const llmInference = await LlmInference.createFromOptions(genai, {  
  baseOptions: { modelAssetPath: 'path/to/yourmodel.task' }  
});  
const prompt = "Translate this text to emoji: what a fun party!";  
const response = await llmInference.generateResponse(prompt);  
 console.log(response); 

一旦缓存,它完全离线运行。零延迟。完全隐私。甚至在飞行模式下也能工作。

更小的模型意味着加载更快的应用和更好的最终用户体验。

总结

这个项目从开始到结束花了我不到一个小时,测试时它甚至使用我最喜欢的表情符号。如果你一直想尝试本地 AI从小处着手,选择一个简单的任务,微调 Gemma将其量化,然后让它直接在你的浏览器中运行。

因为 AI 的未来不仅仅是云端的大型模型------还有那些存在于你口袋里的小型模型。

https://avoid.overfit.cn/post/8e8e6d615ea1480385c1e56d39952dd1

Civil Learning

相关推荐
Coding茶水间2 小时前
基于深度学习的草莓健康度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
weisian1512 小时前
入门篇--人工智能发展史-6-AI视觉的“注意力革命”,大模型的核心动力--Transformer
人工智能·深度学习·transformer
_Li.2 小时前
机器学习-特征选择
人工智能·python·机器学习
囊中之锥.2 小时前
机器学习第一部分---线性回归
人工智能·机器学习·线性回归
司马阅-SmartRead2 小时前
学术研究与产业实践深度融合:司马阅AI合伙人冀文辉亮相「首届创新管理与JPIM论文工作坊」,产学研一体化推动企业AI落地
大数据·人工智能
YANshangqian2 小时前
基于Chromium的隐私优先浏览器
人工智能·intellij-idea
躺柒2 小时前
读人机沟通法则:理解数字世界的设计与形成01机器循环运行
人工智能·计算机·计算·数字世界·人机对话
智算菩萨3 小时前
摩擦电纳米发电机近期进展的理论脉络梳理:从接触起电到统一建模与能量转换
linux·人工智能·算法
LiYingL3 小时前
TRACEALIGN:追踪大规模语言模型对齐漂移的原因和保护措施
人工智能·语言模型·自然语言处理