发布日期:2025年12月21日
作者:DREAMVFIA_OSPM
阅读时间:约60分钟
字数:30000+
📌 目录导航
- 引言:两大革命性技术的历史性交汇
- 量子计算基础:从经典比特到量子比特
- 量子机器学习:理论框架与数学原理
- 量子神经网络:架构设计与实现
- 量子优化算法:解决AI训练瓶颈
- 量子生成对抗网络:创造力的量子飞跃
- 实战案例:量子支持向量机
- 量子自然语言处理:语言理解的新维度
- 技术挑战:噪声、退相干与纠错
- 产业应用:从理论到商业化
- 伦理与安全:量子AI的潘多拉魔盒
- 未来展望:通往AGI的量子之路
🌌 第一章:引言 - 两大革命性技术的历史性交汇
1.1 技术奇点前夜的双重革命
2025年12月,人类站在了一个前所未有的技术交叉路口。一边是人工智能技术的狂飙突进------从GPT-4到多模态大模型,AI已经能够创作艺术、编写代码、诊断疾病;另一边是量子计算的稳步推进------IBM、Google、IonQ等公司相继发布超过1000量子比特的处理器,量子优势从理论走向现实。
当这两种被誉为"21世纪最具颠覆性"的技术开始融合时,一个根本性的问题浮现:量子计算能否成为通往通用人工智能(AGI)的关键钥匙?
1.2 为什么需要量子+AI?
经典计算遭遇的三大瓶颈
1. 摩尔定律的物理极限
晶体管尺寸已接近原子级别(3nm工艺),量子隧穿效应使得继续缩小变得不可行。训练GPT-4级别的模型需要数万块GPU,能耗相当于一个小型城市。
2. 组合爆炸问题
优化一个有100个参数的神经网络,搜索空间为2^100(约10^30)。即使用全球所有计算机,穷举所有可能也需要数十亿年。
3. 数据维度灾难
处理高维数据(如基因组学、气候模拟)时,所需计算资源随维度指数级增长。一个100维向量空间的完整描述需要10^100个数据点。
量子计算的独特优势
经典比特:0 或 1(确定状态)
量子比特:α|0⟩ + β|1⟩(叠加态)
n个经典比特:存储n个数值
n个量子比特:同时表示2^n个状态
具体例子:
- 300个量子比特可表示的状态数 > 宇宙中原子总数(10^80)
- 量子纠缠允许信息以超经典方式关联
- 量子隧穿可快速穿越能量屏障,找到全局最优解
1.3 本文研究范畴与技术路线
本文将深入探讨:
理论层面:
- 量子态与希尔伯特空间如何表示神经网络
- 量子纠缠如何加速矩阵运算
- 量子退火与梯度下降的数学等价性
实践层面:
- 使用Qiskit构建量子分类器
- 在IBM量子云平台运行混合量子-经典算法
- 对比经典与量子模型的性能差异
前沿探索:
- 量子ChatGPT的可能性
- 拓扑量子计算在AI中的应用
- 量子意识理论与通用人工智能
⚛️ 第二章:量子计算基础 - 从经典比特到量子比特
2.1 量子力学五大核心原理
原理一:叠加态(Superposition)
经典类比 :
想象一枚硬币在空中旋转,落地前同时是正面和反面。量子比特在测量前处于所有可能状态的叠加。
数学表示:
|ψ⟩ = α|0⟩ + β|1⟩
其中:
- |α|² + |β|² = 1(归一化条件)
- |α|² = 测量到0的概率
- |β|² = 测量到1的概率
Python模拟量子叠加:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
class Qubit:
"""量子比特模拟器"""
def __init__(self, alpha=1, beta=0):
"""
初始化量子比特
alpha: |0⟩态的振幅
beta: |1⟩态的振幅
"""
# 归一化
norm = np.sqrt(np.abs(alpha)**2 + np.abs(beta)**2)
self.alpha = alpha / norm
self.beta = beta / norm
def __repr__(self):
return f"{self.alpha:.3f}|0⟩ + {self.beta:.3f}|1⟩"
def measure(self, shots=1000):
"""模拟测量过程"""
prob_0 = np.abs(self.alpha)**2
results = np.random.choice([0, 1], size=shots, p=[prob_0, 1-prob_0])
return results
def visualize_bloch_sphere(self):
"""在布洛赫球面上可视化量子态"""
# 计算球面坐标
theta = 2 * np.arccos(np.abs(self.alpha))
phi = np.angle(self.beta) - np.angle(self.alpha)
# 笛卡尔坐标
x = np.sin(theta) * np.cos(phi)
y = np.sin(theta) * np.sin(phi)
z = np.cos(theta)
# 绘制布洛赫球
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
# 绘制球面
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
xs = np.outer(np.cos(u), np.sin(v))
ys = np.outer(np.sin(u), np.sin(v))
zs = np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(xs, ys, zs, alpha=0.1, color='cyan')
# 绘制坐标轴
ax.quiver(0, 0, 0, 0, 0, 1, color='b', arrow_length_ratio=0.1, linewidth=2)
ax.text(0, 0, 1.2, '|0⟩', fontsize=14, color='blue')
ax.quiver(0, 0, 0, 0, 0, -1, color='r', arrow_length_ratio=0.1, linewidth=2)
ax.text(0, 0, -1.2, '|1⟩', fontsize=14, color='red')
# 绘制量子态向量
ax.quiver(0, 0, 0, x, y, z, color='green',
arrow_length_ratio=0.1, linewidth=3)
ax.text(x*1.2, y*1.2, z*1.2, f'|ψ⟩\n({self.alpha:.2f}, {self.beta:.2f})',
fontsize=12, color='green')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('量子态的布洛赫球表示', fontsize=16)
plt.tight_layout()
plt.show()
# 创建不同的量子态
states = [
Qubit(1, 0), # |0⟩ 基态
Qubit(0, 1), # |1⟩ 基态
Qubit(1, 1), # |+⟩ = (|0⟩+|1⟩)/√2 叠加态
Qubit(1, -1), # |-⟩ = (|0⟩-|1⟩)/√2
Qubit(1, 1j), # |i⟩ 复数叠加态
]
print("五种典型量子态:")
for i, state in enumerate(states):
print(f"{i+1}. {state}")
measurements = state.measure(shots=10000)
print(f" 测量统计:0出现 {np.sum(measurements==0)/100:.1f}%, "
f"1出现 {np.sum(measurements==1)/100:.1f}%\n")
# 可视化叠加态
superposition_state = Qubit(1, 1)
superposition_state.visualize_bloch_sphere()
输出结果:
五种典型量子态:
1. 1.000|0⟩ + 0.000|1⟩
测量统计:0出现 100.0%, 1出现 0.0%
2. 0.000|0⟩ + 1.000|1⟩
测量统计:0出现 0.0%, 1出现 100.0%
3. 0.707|0⟩ + 0.707|1⟩
测量统计:0出现 50.1%, 1出现 49.9%
4. 0.707|0⟩ + -0.707|1⟩
测量统计:0出现 49.8%, 1出现 50.2%
5. 0.707|0⟩ + 0.707j|1⟩
测量统计:0出现 50.2%, 1出现 49.8%
原理二:量子纠缠(Entanglement)
EPR悖论与贝尔不等式
1935年,爱因斯坦、波多尔斯基、罗森提出EPR悖论,质疑量子力学的完备性。1964年,约翰·贝尔提出可验证的不等式,实验证明量子纠缠真实存在。
数学定义:
不可分离态(纠缠态):
|ψ⟩ ≠ |ψ_A⟩ ⊗ |ψ_B⟩
贝尔态(最大纠缠态):
|Φ⁺⟩ = (|00⟩ + |11⟩) / √2
|Φ⁻⟩ = (|00⟩ - |11⟩) / √2
|Ψ⁺⟩ = (|01⟩ + |10⟩) / √2
|Ψ⁻⟩ = (|01⟩ - |10⟩) / √2
量子纠缠模拟:
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import transpile
from qiskit_aer import AerSimulator
from qiskit.visualization import plot_histogram, plot_bloch_multivector
import matplotlib.pyplot as plt
class EntanglementDemo:
"""量子纠缠演示"""
def __init__(self):
self.simulator = AerSimulator()
def create_bell_state(self, bell_type='phi_plus'):
"""创建贝尔态"""
qr = QuantumRegister(2, 'q')
cr = ClassicalRegister(2, 'c')
qc = QuantumCircuit(qr, cr)
# 创建纠缠
qc.h(qr[0]) # Hadamard门创建叠加态
qc.cx(qr[0], qr[1]) # CNOT门创建纠缠
# 根据类型调整
if bell_type == 'phi_minus':
qc.z(qr[0])
elif bell_type == 'psi_plus':
qc.x(qr[1])
elif bell_type == 'psi_minus':
qc.z(qr[0])
qc.x(qr[1])
return qc
def demonstrate_correlation(self):
"""演示量子关联"""
qc = self.create_bell_state('phi_plus')
# 测量两个量子比特
qc.measure([0, 1], [0, 1])
# 运行多次
compiled_circuit = transpile(qc, self.simulator)
job = self.simulator.run(compiled_circuit, shots=1000)
result = job.result()
counts = result.get_counts()
print("贝尔态 |Φ⁺⟩ 测量结果:")
print(f" |00⟩ 出现次数: {counts.get('00', 0)}")
print(f" |01⟩ 出现次数: {counts.get('01', 0)}")
print(f" |10⟩ 出现次数: {counts.get('10', 0)}")
print(f" |11⟩ 出现次数: {counts.get('11', 0)}")
print("\n关键观察:只出现 |00⟩ 和 |11⟩,两个量子比特完全关联!")
# 可视化
plot_histogram(counts, title='贝尔态测量统计')
plt.show()
return qc
def test_bell_inequality(self):
"""测试贝尔不等式"""
print("\n=== 贝尔不等式验证 ===")
# 设置测量基
measurement_settings = [
('Z', 'Z'), # 同基测量
('Z', 'X'), # 不同基测量
('X', 'Z'),
('X', 'X'),
]
correlations = []
for basis_a, basis_b in measurement_settings:
qc = self.create_bell_state('phi_plus')
# 应用测量基
if basis_a == 'X':
qc.h(0)
if basis_b == 'X':
qc.h(1)
qc.measure([0, 1], [0, 1])
# 执行
compiled_circuit = transpile(qc, self.simulator)
job = self.simulator.run(compiled_circuit, shots=10000)
result = job.result()
counts = result.get_counts()
# 计算关联
same = counts.get('00', 0) + counts.get('11', 0)
diff = counts.get('01', 0) + counts.get('10', 0)
correlation = (same - diff) / 10000
correlations.append(correlation)
print(f"测量基 ({basis_a}, {basis_b}): 关联度 = {correlation:.3f}")
# 计算CHSH值
S = abs(correlations[0] - correlations[1]) + abs(correlations[2] + correlations[3])
print(f"\nCHSH值 S = {S:.3f}")
print(f"经典极限:S ≤ 2")
print(f"量子极限:S ≤ 2√2 ≈ 2.828")
if S > 2:
print("✅ 违反贝尔不等式!证实量子纠缠存在")
else:
print("❌ 未违反贝尔不等式(可能需要更多采样)")
# 运行演示
demo = EntanglementDemo()
bell_circuit = demo.demonstrate_correlation()
print("\n生成的量子电路:")
print(bell_circuit)
demo.test_bell_inequality()
原理三:量子门操作
单量子比特门:
import numpy as np
class QuantumGates:
"""量子门矩阵定义"""
# 泡利门
X = np.array([[0, 1], [1, 0]]) # 比特翻转(NOT门)
Y = np.array([[0, -1j], [1j, 0]]) # Y旋转
Z = np.array([[1, 0], [0, -1]]) # 相位翻转
# Hadamard门(创建叠加态)
H = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
# 相位门
S = np.array([[1, 0], [0, 1j]]) # π/2相位
T = np.array([[1, 0], [0, np.exp(1j*np.pi/4)]]) # π/4相位
# 旋转门
@staticmethod
def RX(theta):
"""绕X轴旋转"""
return np.array([
[np.cos(theta/2), -1j*np.sin(theta/2)],
[-1j*np.sin(theta/2), np.cos(theta/2)]
])
@staticmethod
def RY(theta):
"""绕Y轴旋转"""
return np.array([
[np.cos(theta/2), -np.sin(theta/2)],
[np.sin(theta/2), np.cos(theta/2)]
])
@staticmethod
def RZ(theta):
"""绕Z轴旋转"""
return np.array([
[np.exp(-1j*theta/2), 0],
[0, np.exp(1j*theta/2)]
])
# 演示量子门效果
def apply_gate(gate, state):
"""对量子态应用门操作"""
return gate @ state
# 初始态 |0⟩
state_0 = np.array([1, 0])
# 应用Hadamard门
state_plus = apply_gate(QuantumGates.H, state_0)
print("H|0⟩ =", state_plus)
print("归一化检查:", np.sum(np.abs(state_plus)**2))
# 应用Pauli-X门
state_1 = apply_gate(QuantumGates.X, state_0)
print("\nX|0⟩ =", state_1)
# 旋转门示例
state_rotated = apply_gate(QuantumGates.RY(np.pi/4), state_0)
print(f"\nRY(π/4)|0⟩ = [{state_rotated[0]:.3f}, {state_rotated[1]:.3f}]")
双量子比特门(纠缠门):
class TwoQubitGates:
"""双量子比特门"""
# CNOT门(受控非门)
CNOT = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]
])
# SWAP门
SWAP = np.array([
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]
])
# Toffoli门(CCNOT,双控制非门)
TOFFOLI = np.array([
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0]
])
@staticmethod
def controlled_U(U):
"""构造任意单比特门的受控版本"""
CU = np.eye(4, dtype=complex)
CU[2:, 2:] = U
return CU
# 创建贝尔态的矩阵方法
def create_bell_state_matrix():
"""用矩阵运算创建贝尔态"""
# 初始态 |00⟩
state_00 = np.array([1, 0, 0, 0])
# 1. 对第一个量子比特应用Hadamard门
H_I = np.kron(QuantumGates.H, np.eye(2)) # H⊗I
state_after_h = H_I @ state_00
print("H⊗I |00⟩ =", state_after_h)
# 2. 应用CNOT门
bell_state = TwoQubitGates.CNOT @ state_after_h
print("CNOT (H⊗I |00⟩) =", bell_state)
print("\n这对应贝尔态 |Φ⁺⟩ = (|00⟩ + |11⟩)/√2")
return bell_state
bell = create_bell_state_matrix()
2.2 量子计算模型
量子电路模型
from qiskit import QuantumCircuit
from qiskit.visualization import circuit_drawer
def build_quantum_adder():
"""构建量子半加器"""
qc = QuantumCircuit(4, 2)
# 输入:q[0]和q[1]是待加数字
# 输出:q[2]是和,q[3]是进位
# 计算进位(AND运算)
qc.ccx(0, 1, 3) # Toffoli门实现AND
# 计算和(XOR运算)
qc.cx(0, 2)
qc.cx(1, 2)
# 测量
qc.measure([2, 3], [0, 1])
return qc
adder = build_quantum_adder()
print("量子半加器电路:")
print(adder)
# 可视化
adder.draw('mpl', filename='quantum_adder.png')
绝热量子计算
原理:系统在基态演化,始终保持在能量最低状态。
哈密顿量演化:
H(t) = (1 - t/T)H₀ + (t/T)H_problem
其中:
- H₀:容易制备的初始哈密顿量
- H_problem:问题哈密顿量(基态编码答案)
- T:演化时间(需足够慢)
代码实现(模拟退火):
import numpy as np
import matplotlib.pyplot as plt
class QuantumAnnealing:
"""量子退火模拟"""
def __init__(self, problem_hamiltonian, initial_hamiltonian=None):
self.H_problem = problem_hamiltonian
self.H_initial = initial_hamiltonian if initial_hamiltonian is not None \
else np.ones_like(problem_hamiltonian)
def interpolate_hamiltonian(self, t, T):
"""插值哈密顿量"""
s = t / T
return (1 - s) * self.H_initial + s * self.H_problem
def evolve(self, T=100, dt=0.1):
"""绝热演化"""
times = np.arange(0, T, dt)
n = self.H_problem.shape[0]
# 初始态:H_initial的基态
eigenvalues, eigenvectors = np.linalg.eigh(self.H_initial)
state = eigenvectors[:, 0] # 最低能量本征态
energies = []
for t in times:
H_t = self.interpolate_hamiltonian(t, T)
# 计算当前能量期望值
energy = np.real(state.conj() @ H_t @ state)
energies.append(energy)
# 演化(简化的欧拉方法)
state = state - 1j * dt * (H_t @ state)
state = state / np.linalg.norm(state) # 归一化
# 最终态投影到问题哈密顿量本征态
eigenvalues_final, eigenvectors_final = np.linalg.eigh(self.H_problem)
probabilities = np.abs(eigenvectors_final.T @ state)**2
return times, energies, eigenvalues_final, probabilities
# 示例:求解Ising模型
def ising_hamiltonian(J, h):
"""
一维Ising模型
H = -Σ J_i σ_i^z σ_{i+1}^z - Σ h_i σ_i^z
"""
n = len(h)
H = np.zeros((2**n, 2**n))
# 简化为2比特情况
sigma_z = np.array([[1, 0], [0, -1]])
# 相互作用项
H += -J * np.kron(sigma_z, sigma_z)
# 外场项
H += -h[0] * np.kron(sigma_z, np.eye(2))
H += -h[1] * np.kron(np.eye(2), sigma_z)
return H
# 设置问题
J = 1.0
h = np.array([0.5, -0.3])
H_problem = ising_hamiltonian(J, h)
# 初始哈密顿量(横场)
sigma_x = np.array([[0, 1], [1, 0]])
H_initial = -np.kron(sigma_x, np.eye(2)) - np.kron(np.eye(2), sigma_x)
# 运行退火
annealer = QuantumAnnealing(H_problem, H_initial)
times, energies, final_energies, probabilities = annealer.evolve(T=50)
# 可视化
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
ax1.plot(times, energies, linewidth=2)
ax1.axhline(y=min(final_energies), color='r', linestyle='--',
label=f'基态能量 = {min(final_energies):.3f}')
ax1.set_xlabel('时间 t')
ax1.set_ylabel('能量期望值')
ax1.set_title('绝热演化过程')
ax1.legend()
ax1.grid(True)
ax2.bar(range(len(probabilities)), probabilities, color='teal')
ax2.set_xlabel('本征态索引')
ax2.set_ylabel('概率')
ax2.set_title('最终态在问题哈密顿量本征态上的分布')
ax2.grid(True, axis='y')
plt.tight_layout()
plt.show()
print(f"找到基态的概率:{probabilities[np.argmin(final_energies)]:.2%}")
2.3 量子算法经典案例
Grover搜索算法
问题:在N个无序元素中找到目标元素。
经典复杂度 :O(N)
量子复杂度:O(√N)
算法步骤:
-
制备均匀叠加态
-
重复√N次:
- Oracle标记目标
- 扩散算子放大振幅
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.visualization import plot_histogram
from qiskit_aer import AerSimulator
import numpy as npdef grover_oracle(marked_states, n_qubits):
"""构造Grover Oracle"""
qc = QuantumCircuit(n_qubits)for target in marked_states: # 将目标状态转为二进制 target_bin = format(target, f'0{n_qubits}b') # 对每个为0的比特应用X门 for i, bit in enumerate(target_bin): if bit == '0': qc.x(i) # 多控制Z门 qc.h(n_qubits - 1) qc.mcx(list(range(n_qubits - 1)), n_qubits - 1) qc.h(n_qubits - 1) # 恢复 for i, bit in enumerate(target_bin): if bit == '0': qc.x(i) return qcdef grover_diffusion(n_qubits):
"""构造扩散算子"""
qc = QuantumCircuit(n_qubits)# H^⊗n qc.h(range(n_qubits)) # X^⊗n qc.x(range(n_qubits)) # 多控制Z qc.h(n_qubits - 1) qc.mcx(list(range(n_qubits - 1)), n_qubits - 1) qc.h(n_qubits - 1) # X^⊗n qc.x(range(n_qubits)) # H^⊗n qc.h(range(n_qubits)) return qcdef grover_algorithm(marked_states, n_qubits):
"""完整Grover算法"""
# 计算迭代次数
N = 2**n_qubits
iterations = int(np.pi / 4 * np.sqrt(N / len(marked_states)))qr = QuantumRegister(n_qubits, 'q') cr = ClassicalRegister(n_qubits, 'c') qc = QuantumCircuit(qr, cr) # 1. 初始化为均匀叠加态 qc.h(range(n_qubits)) # 2. Grover迭代 for _ in range(iterations): # Oracle oracle = grover_oracle(marked_states, n_qubits) qc.compose(oracle, inplace=True) # Diffusion diffusion = grover_diffusion(n_qubits) qc.compose(diffusion, inplace=True) # 3. 测量 qc.measure(qr, cr) return qc, iterations示例:在16个元素中搜索
n = 4 # 4个量子比特表示16个状态
targets = [5, 11] # 搜索目标:|0101⟩ 和 |1011⟩grover_qc, num_iter = grover_algorithm(targets, n)
print(f"搜索空间大小:2^{n} = {2**n}")
print(f"目标状态:{targets}")
print(f"Grover迭代次数:{num_iter}")运行模拟
simulator = AerSimulator()
compiled_circuit = transpile(grover_qc, simulator)
job = simulator.run(compiled_circuit, shots=1024)
result = job.result()
counts = result.get_counts()可视化结果
plot_histogram(counts, title=f'Grover算法搜索结果(目标:{targets})')
plt.show()验证成功率
success_count = sum(counts.get(format(t, f'0{n}b'), 0) for t in targets)
print(f"\n成功率:{success_count / 1024 * 100:.1f}%")
print(f"理论成功率:~100%(理想情况)")
Shor因数分解算法
问题:分解大整数N = p × q
经典复杂度 :超指数时间(最佳已知算法)
量子复杂度:O((log N)³)
核心思想:
-
找到函数f(x) = a^x mod N的周期r
-
若r为偶数且a^(r/2) ≠ -1 (mod N),则:
- gcd(a^(r/2) - 1, N) 或
- gcd(a^(r/2) + 1, N)
是N的非平凡因子
from qiskit import QuantumCircuit
from qiskit.circuit.library import QFT
import mathdef quantum_period_finding(a, N, n_count):
"""量子周期查找(Shor算法核心)"""
qc = QuantumCircuit(n_count + 4, n_count)# 计数寄存器 count_qubits = list(range(n_count)) # 辅助寄存器 aux_qubits = list(range(n_count, n_count + 4)) # 1. 初始化 qc.h(count_qubits) # 创建叠加态 qc.x(aux_qubits[-1]) # 辅助寄存器设为|1⟩ # 2. 模幂运算 U^(2^j) |y⟩ = |a^(2^j) * y mod N⟩ for i in range(n_count): # 这里使用简化版本,实际需要实现模乘法电路 qc.cp(2 * np.pi * (a**(2**i) % N) / (2**n_count), count_qubits[i], aux_qubits[-1]) # 3. 逆量子傅里叶变换 qc.append(QFT(n_count, inverse=True), count_qubits) # 4. 测量计数寄存器 qc.measure(count_qubits, list(range(n_count))) return qcdef classical_post_processing(measured_phase, a, N):
"""经典后处理:连分数展开找周期"""
from fractions import Fraction# 将测量值转换为相位 phase = measured_phase / (2**len(bin(measured_phase)[2:])) # 连分数展开 frac = Fraction(phase).limit_denominator(N) r = frac.denominator # 验证周期 if a**r % N == 1: return r # 尝试r的倍数 for multiplier in range(2, 10): if a**(r * multiplier) % N == 1: return r * multiplier return Nonedef shor_algorithm(N):
"""Shor算法完整流程"""
print(f"=== 分解 N = {N} ===\n")# 1. 经典预处理 if N % 2 == 0: print(f"偶数,因子:2 和 {N//2}") return 2, N//2 # 2. 随机选择a import random a = random.randint(2, N-1) print(f"随机选择 a = {a}") # 检查gcd g = math.gcd(a, N) if g != 1: print(f"幸运!gcd({a}, {N}) = {g}") return g, N//g # 3. 量子部分:周期查找 n_count = 8 # 计数寄存器大小 qc = quantum_period_finding(a, N, n_count) # 模拟运行(实际需要在量子计算机上) print("\n量子电路构建完成,执行周期查找...") # 这里用经典方法找周期作为演示 r = 1 while a**r % N != 1: r += 1 if r > N: # 防止无限循环 print("未找到周期") return None, None print(f"找到周期 r = {r}") # 4. 经典后处理 if r % 2 != 0: print("周期为奇数,重新尝试") return shor_algorithm(N) x = a**(r//2) % N if x == N - 1: print("a^(r/2) ≡ -1 (mod N),重新尝试") return shor_algorithm(N) # 5. 计算因子 factor1 = math.gcd(x - 1, N) factor2 = math.gcd(x + 1, N) if factor1 != 1 and factor1 != N: print(f"\n✅ 成功!因子:{factor1} 和 {N//factor1}") return factor1, N//factor1 elif factor2 != 1 and factor2 != N: print(f"\n✅ 成功!因子:{factor2} 和 {N//factor2}") return factor2, N//factor2 else: print("未找到非平凡因子,重新尝试") return shor_algorithm(N)运行示例
N = 15 # 分解15 = 3 × 5
factors = shor_algorithm(N)验证
if factors[0] and factors[1]:
print(f"\n验证:{factors[0]} × {factors[1]} = {factors[0] * factors[1]}")
🧠 第三章:量子机器学习 - 理论框架与数学原理
3.1 量子机器学习的数学基础
希尔伯特空间中的数据编码
问题:如何将经典数据 x ∈ ℝⁿ 编码到量子态 |ψ(x)⟩?
方法1:幅度编码(Amplitude Encoding)
|ψ(x)⟩ = Σᵢ xᵢ|i⟩ / ||x||
优点:指数级压缩(n维数据→log₂(n)个量子比特)
缺点:状态制备复杂度高
import numpy as np
from qiskit import QuantumCircuit
from qiskit.circuit.library import Initialize
def amplitude_encoding(data):
"""幅度编码"""
# 归一化
norm = np.linalg.norm(data)
normalized_data = data / norm
# 计算所需量子比特数
n_qubits = int(np.ceil(np.log2(len(data))))
# 填充到2的幂次
padded_data = np.pad(normalized_data,
(0, 2**n_qubits - len(data)),
mode='constant')
# 创建量子电路
qc = QuantumCircuit(n_qubits)
qc.append(Initialize(padded_data), range(n_qubits))
return qc, n_qubits
# 示例
classical_data = np.array([0.5, 0.3, 0.7, 0.1])
qc_encoded, n_qubits = amplitude_encoding(classical_data)
print(f"原始数据维度:{len(classical_data)}")
print(f"编码后量子比特数:{n_qubits}")
print(f"压缩比:{len(classical_data) / n_qubits:.1f}x")
print("\n量子电路:")
print(qc_encoded.decompose())
方法2:角度编码(Angle Encoding)
|ψ(x)⟩ = ⊗ᵢ (cos(xᵢ)|0⟩ + sin(xᵢ)|1⟩)
优点:简单直观
缺点:需要n个量子比特编码n维数据
def angle_encoding(data):
"""角度编码"""
n_qubits = len(data)
qc = QuantumCircuit(n_qubits)
for i, x in enumerate(data):
qc.ry(2 * x, i) # RY(2x)|0⟩ = cos(x)|0⟩ + sin(x)|1⟩
return qc
# 示例
data = np.array([np.pi/4, np.pi/3, np.pi/6])
qc_angle = angle_encoding(data)
print("角度编码电路:")
print(qc_angle)
方法3:基编码(Basis Encoding)
x = (x₁, x₂, ..., xₙ) ∈ {0,1}ⁿ → |x₁x₂...xₙ⟩
直接将二进制数映射到计算基
量子核方法(Quantum Kernel Methods)
核心思想:量子态内积作为特征空间的核函数
数学定义:
K(x, x') = |⟨ψ(x)|ψ(x')⟩|²
对应经典核:
k(x, x') = φ(x)ᵀφ(x')
量子优势:量子特征映射可以在经典难以计算的高维空间中操作
from qiskit.circuit.library import ZZFeatureMap, PauliFeatureMap
from qiskit_machine_learning.kernels import FidelityQuantumKernel
from sklearn.svm import SVC
import matplotlib.pyplot as plt
class QuantumKernelClassifier:
"""量子核分类器"""
def __init__(self, n_qubits, feature_map='zz'):
self.n_qubits = n_qubits
# 选择特征映射
if feature_map == 'zz':
self.feature_map = ZZFeatureMap(n_qubits, reps=2)
elif feature_map == 'pauli':
self.feature_map = PauliFeatureMap(n_qubits, reps=2, paulis=['Z', 'ZZ'])
# 构建量子核
self.quantum_kernel = FidelityQuantumKernel(feature_map=self.feature_map)
def train(self, X_train, y_train):
"""训练量子核SVM"""
# 计算核矩阵
kernel_matrix_train = self.quantum_kernel.evaluate(X_train)
# 使用预计算核的SVM
self.svm = SVC(kernel='precomputed')
self.svm.fit(kernel_matrix_train, y_train)
self.X_train = X_train
def predict(self, X_test):
"""预测"""
# 计算测试集与训练集的核矩阵
kernel_matrix_test = self.quantum_kernel.evaluate(X_test, self.X_train)
return self.svm.predict(kernel_matrix_test)
def visualize_kernel_matrix(self, X, title="量子核矩阵"):
"""可视化核矩阵"""
kernel_matrix = self.quantum_kernel.evaluate(X)
plt.figure(figsize=(8, 6))
plt.imshow(kernel_matrix, cmap='viridis', aspect='auto')
plt.colorbar(label='核函数值')
plt.title(title)
plt.xlabel('样本索引')
plt.ylabel('样本索引')
plt.tight_layout()
plt.show()
return kernel_matrix
# 生成示例数据(XOR问题)
np.random.seed(42)
n_samples = 40
X_class0 = np.random.randn(n_samples//4, 2) + np.array([1, 1])
X_class1 = np.random.randn(n_samples//4, 2) + np.array([-1, -1])
X_class2 = np.random.randn(n_samples//4, 2) + np.array([1, -1])
X_class3 = np.random.randn(n_samples//4, 2) + np.array([-1, 1])
X = np.vstack([X_class0, X_class2, X_class1, X_class3])
y = np.array([0]*( n_samples//2) + [1]*(n_samples//2))
# 训练量子核分类器
qkc = QuantumKernelClassifier(n_qubits=2, feature_map='zz')
qkc.train(X, y)
# 可视化核矩阵
kernel_matrix = qkc.visualize_kernel_matrix(X, title="ZZ特征映射的量子核矩阵")
# 预测
y_pred = qkc.predict(X)
accuracy = np.mean(y_pred == y)
print(f"训练集准确率:{accuracy * 100:.2f}%")
# 对比经典核
from sklearn.svm import SVC as ClassicalSVC
classical_svm = ClassicalSVC(kernel='rbf')
classical_svm.fit(X, y)
classical_acc = classical_svm.score(X, y)
print(f"经典RBF核准确率:{classical_acc * 100:.2f}%")
3.2 变分量子算法(Variational Quantum Algorithms)
QAOA(Quantum Approximate Optimization Algorithm)
应用场景:组合优化问题(MaxCut、TSP等)
算法流程:
1. 初始化 |ψ₀⟩ = |+⟩^⊗n
2. 应用参数化幺正算子:
U(β, γ) = e^(-iβH_M) e^(-iγH_C)
其中 H_C 是成本哈密顿量,H_M 是混合哈密顿量
3. 测量期望值 ⟨H_C⟩
4. 经典优化器更新参数
5. 重复直到收敛
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
from scipy.optimize import minimize
class QAOA:
"""量子近似优化算法"""
def __init__(self, graph, p=1):
"""
graph: NetworkX图对象
p: QAOA层数
"""
self.graph = graph
self.p = p
self.n_qubits = len(graph.nodes())
def build_circuit(self, params):
"""构建QAOA电路"""
gamma = params[:self.p]
beta = params[self.p:]
qc = QuantumCircuit(self.n_qubits)
# 初始化为 |+⟩^⊗n
qc.h(range(self.n_qubits))
# QAOA层
for layer in range(self.p):
# 成本哈密顿量 H_C (对于MaxCut)
for edge in self.graph.edges():
i, j = edge
qc.rzz(2 * gamma[layer], i, j)
# 混合哈密顿量 H_M
for qubit in range(self.n_qubits):
qc.rx(2 * beta[layer], qubit)
return qc
def compute_expectation(self, params):
"""计算成本函数期望值"""
qc = self.build_circuit(params)
qc.measure_all()
# 模拟执行
from qiskit_aer import AerSimulator
simulator = AerSimulator()
from qiskit import transpile
compiled = transpile(qc, simulator)
job = simulator.run(compiled, shots=1024)
counts = job.result().get_counts()
# 计算MaxCut目标函数
expectation = 0
for bitstring, count in counts.items():
# 反转字符串(Qiskit的比特顺序)
bitstring = bitstring[::-1]
# 计算这个配置的cut值
cut_value = 0
for edge in self.graph.edges():
i, j = edge
if bitstring[i] != bitstring[j]:
cut_value += 1
expectation += cut_value * count / 1024
# QAOA最小化负期望值
return -expectation
def optimize(self):
"""运行优化"""
# 随机初始化参数
initial_params = np.random.uniform(0, 2*np.pi, 2*self.p)
# 经典优化
result = minimize(
self.compute_expectation,
initial_params,
method='COBYLA',
options={'maxiter': 100}
)
return result
# 示例:解决MaxCut问题
import networkx as nx
# 创建测试图
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (0, 2)])
# 运行QAOA
qaoa = QAOA(G, p=2)
result = qaoa.optimize()
print("=== QAOA求解MaxCut ===")
print(f"图的边:{list(G.edges())}")
print(f"优化后的参数:{result.x}")
print(f"最大割边数:{-result.fun:.2f}")
# 对比经典贪心算法
def greedy_maxcut(graph):
"""贪心算法求MaxCut"""
partition = set()
for node in graph.nodes():
# 计算放入partition或不放入的cut增量
cut_in = sum(1 for neighbor in graph.neighbors(node)
if neighbor not in partition)
cut_out = sum(1 for neighbor in graph.neighbors(node)
if neighbor in partition)
if cut_in > cut_out:
partition.add(node)
# 计算最终cut值
cut_value = sum(1 for i, j in graph.edges()
if (i in partition) != (j in partition))
return cut_value
classical_cut = greedy_maxcut(G)
print(f"经典贪心算法结果:{classical_cut}")
VQE(Variational Quantum Eigensolver)
应用:求解分子基态能量、优化问题
数学原理:
E(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ ≥ E₀
Rayleigh-Ritz变分原理保证:
参数化量子态的能量期望值 ≥ 真实基态能量
from qiskit.circuit.library import TwoLocal
from qiskit.primitives import Estimator
from qiskit.quantum_info import SparsePauliOp
class VQE:
"""变分量子本征求解器"""
def __init__(self, hamiltonian, ansatz=None):
"""
hamiltonian: 哈密顿量(Pauli算符形式)
ansatz: 参数化量子电路(默认使用TwoLocal)
"""
self.hamiltonian = hamiltonian
self.n_qubits = hamiltonian.num_qubits
if ansatz is None:
# 默认ansatz:硬件高效试错电路
self.ansatz = TwoLocal(
self.n_qubits,
rotation_blocks=['ry', 'rz'],
entanglement_blocks='cz',
entanglement='linear',
reps=3
)
else:
self.ansatz = ansatz
self.estimator = Estimator()
def cost_function(self, params):
"""计算能量期望值"""
# 绑定参数
bound_circuit = self.ansatz.bind_parameters(params)
# 计算 ⟨ψ(θ)|H|ψ(θ)⟩
job = self.estimator.run([bound_circuit], [self.hamiltonian])
result = job.result()
energy = result.values[0]
return energy
def optimize(self, initial_params=None):
"""运行VQE优化"""
if initial_params is None:
initial_params = np.random.uniform(
0, 2*np.pi,
self.ansatz.num_parameters
)
# 记录能量演化
self.energy_history = []
def callback(params):
energy = self.cost_function(params)
self.energy_history.append(energy)
# 优化
result = minimize(
self.cost_function,
initial_params,
method='COBYLA',
callback=callback,
options={'maxiter': 200}
)
return result
def visualize_convergence(self):
"""可视化收敛过程"""
plt.figure(figsize=(10, 6))
plt.plot(self.energy_history, marker='o', linestyle='-', linewidth=2)
plt.xlabel('迭代次数', fontsize=12)
plt.ylabel('能量期望值', fontsize=12)
plt.title('VQE收敛曲线', fontsize=14)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 示例:求解H₂分子基态能量
# 哈密顿量(简化版):H = -1.05 * ZZ + 0.39 * XX
H2_hamiltonian = SparsePauliOp.from_list([
('ZZ', -1.0523),
('XX', 0.3979),
('YY', 0.3979),
('ZI', -0.4805),
('IZ', -0.4805),
])
# 运行VQE
vqe = VQE(H2_hamiltonian)
result = vqe.optimize()
print("=== VQE求解H₂分子基态 ===")
print(f"量子比特数:{vqe.n_qubits}")
print(f"Ansatz参数数量:{vqe.ansatz.num_parameters}")
print(f"优化后能量:{result.fun:.6f} Hartree")
print(f"理论基态能量:-1.137 Hartree")
print(f"误差:{abs(result.fun - (-1.137)):.6f} Hartree")
# 可视化收敛
vqe.visualize_convergence()
3.3 量子梯度计算
参数偏移规则(Parameter Shift Rule)
量子电路中参数的导数可以通过两次电路执行计算:
∂⟨H⟩/∂θᵢ = [⟨H⟩(θᵢ + π/2) - ⟨H⟩(θᵢ - π/2)] / 2
代码实现:
def parameter_shift_gradient(circuit, hamiltonian, params, param_index):
"""
使用参数偏移规则计算梯度
circuit: 参数化量子电路
hamiltonian: 观测量
params: 当前参数值
param_index: 要计算导数的参数索引
"""
shift = np.pi / 2
# 正向偏移
params_plus = params.copy()
params_plus[param_index] += shift
circuit_plus = circuit.bind_parameters(params_plus)
estimator = Estimator()
job_plus = estimator.run([circuit_plus], [hamiltonian])
expectation_plus = job_plus.result().values[0]
# 负向偏移
params_minus = params.copy()
params_minus[param_index] -= shift
circuit_minus = circuit.bind_parameters(params_minus)
job_minus = estimator.run([circuit_minus], [hamiltonian])
expectation_minus = job_minus.result().values[0]
# 计算导数
gradient = (expectation_plus - expectation_minus) / 2
return gradient
def compute_full_gradient(circuit, hamiltonian, params):
"""计算完整梯度向量"""
gradients = []
for i in range(len(params)):
grad_i = parameter_shift_gradient(circuit, hamiltonian, params, i)
gradients.append(grad_i)
return np.array(gradients)
# 示例:手动梯度下降
def manual_vqe_with_gradients(hamiltonian, ansatz, max_iterations=50, learning_rate=0.1):
"""使用参数偏移规则的手动VQE"""
params = np.random.uniform(0, 2*np.pi, ansatz.num_parameters)
energy_history = []
for iteration in range(max_iterations):
# 计算当前能量
bound_circuit = ansatz.bind_parameters(params)
estimator = Estimator()
job = estimator.run([bound_circuit], [hamiltonian])
energy = job.result().values[0]
energy_history.append(energy)
if iteration % 10 == 0:
print(f"迭代 {iteration}: 能量 = {energy:.6f}")
# 计算梯度
gradients = compute_full_gradient(ansatz, hamiltonian, params)
# 梯度下降更新
params = params - learning_rate * gradients
return params, energy_history
# 运行手动VQE
print("\n=== 基于参数偏移规则的VQE ===")
final_params, history = manual_vqe_with_gradients(
H2_hamiltonian,
vqe.ansatz,
max_iterations=30,
learning_rate=0.05
)
plt.figure(figsize=(10, 6))
plt.plot(history, marker='s', linestyle='--', color='purple', linewidth=2)
plt.axhline(y=-1.137, color='r', linestyle=':', label='理论基态能量')
plt.xlabel('迭代次数')
plt.ylabel('能量 (Hartree)')
plt.title('基于量子梯度的VQE优化')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
🕸️ 第四章:量子神经网络 - 架构设计与实现
4.1 量子神经网络基本结构
量子感知机(Quantum Perceptron)
经典感知机:
y = σ(w·x + b)
量子版本:
|ψ_out⟩ = U(θ)|ψ_in⟩
y = ⟨Z⟩ = ⟨ψ_out|Z|ψ_out⟩
代码实现:
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit import ParameterVector
import matplotlib.pyplot as plt
class QuantumPerceptron:
"""单层量子感知机"""
def __init__(self, n_qubits):
self.n_qubits = n_qubits
self.weights = ParameterVector('w', n_qubits)
self.bias = ParameterVector('b', 1)
def build_circuit(self):
"""构建量子电路"""
qc = QuantumCircuit(self.n_qubits)
# 输入层:角度编码
for i in range(self.n_qubits):
qc.ry(self.weights[i], i)
# 偏置
qc.ry(self.bias[0], 0)
# 纠缠层
for i in range(self.n_qubits - 1):
qc.cx(i, i+1)
return qc
def forward(self, x, params):
"""前向传播"""
# 绑定输入数据到权重
qc = self.build_circuit()
param_dict = {self.weights[i]: x[i] * params[i]
for i in range(self.n_qubits)}
param_dict[self.bias[0]] = params[-1]
bound_qc = qc.bind_parameters(param_dict)
# 测量Z期望值
from qiskit.quantum_info import Statevector
state = Statevector(bound_qc)
# 计算第一个量子比特的Z期望值
from qiskit.quantum_info import Pauli
Z = Pauli('Z' + 'I' * (self.n_qubits - 1))
expectation = state.expectation_value(Z).real
return expectation
def train(self, X_train, y_train, epochs=100, learning_rate=0.01):
"""训练量子感知机"""
params = np.random.randn(self.n_qubits + 1) * 0.1
loss_history = []
for epoch in range(epochs):
total_loss = 0
gradients = np.zeros_like(params)
for x, y_true in zip(X_train, y_train):
# 前向传播
y_pred = self.forward(x, params)
# 计算损失(MSE)
loss = (y_pred - y_true)**2
total_loss += loss
# 数值梯度(简化版)
epsilon = 0.01
for i in range(len(params)):
params_plus = params.copy()
params_plus[i] += epsilon
y_plus = self.forward(x, params_plus)
params_minus = params.copy()
params_minus[i] -= epsilon
y_minus = self.forward(x, params_minus)
grad = (y_plus - y_minus) / (2 * epsilon)
gradients[i] += 2 * (y_pred - y_true) * grad
# 更新参数
gradients /= len(X_train)
params -= learning_rate * gradients
avg_loss = total_loss / len(X_train)
loss_history.append(avg_loss)
if epoch % 20 == 0:
print(f"Epoch {epoch}: 平均损失 = {avg_loss:.4f}")
self.trained_params = params
return loss_history
# 生成XOR数据
X_xor = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y_xor = np.array([-1, 1, 1, -1]) # XOR输出映射到{-1, 1}
# 训练量子感知机
qp = QuantumPerceptron(n_qubits=2)
loss_history = qp.train(X_xor, y_xor, epochs=200, learning_rate=0.1)
# 可视化训练过程
plt.figure(figsize=(10, 6))
plt.plot(loss_history, linewidth=2, color='teal')
plt.xlabel('训练轮数', fontsize=12)
plt.ylabel('平均损失(MSE)', fontsize=12)
plt.title('量子感知机训练曲线', fontsize=14)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 测试
print("\n=== 测试结果 ===")
for x, y_true in zip(X_xor, y_xor):
y_pred = qp.forward(x, qp.trained_params)
print(f"输入: {x}, 真实: {y_true:+d}, 预测: {y_pred:+.2f}")
4.2 量子卷积神经网络(QCNN)
架构设计:
-
量子卷积层:局部幺正操作
-
量子池化层:减少量子比特数
-
全连接层:测量输出
from qiskit.circuit.library import RealAmplitudes
class QuantumConvolutionalLayer:
"""量子卷积层"""def __init__(self, n_qubits, kernel_size=2): self.n_qubits = n_qubits self.kernel_size = kernel_size def build_circuit(self): """构建卷积层电路""" qc = QuantumCircuit(self.n_qubits) params = ParameterVector('conv', self.n_qubits * 3) param_idx = 0 # 滑动窗口卷积 for i in range(0, self.n_qubits - self.kernel_size + 1, self.kernel_size): # 在每个窗口内应用参数化幺正操作 for j in range(self.kernel_size): qubit = i + j qc.ry(params[param_idx], qubit) param_idx += 1 qc.rz(params[param_idx], qubit) param_idx += 1 # 纠缠相邻量子比特 for j in range(self.kernel_size - 1): qc.cx(i + j, i + j + 1) qc.ry(params[param_idx], i + j + 1) param_idx += 1 return qcclass QuantumPoolingLayer:
"""量子池化层"""def __init__(self, n_qubits): self.n_qubits = n_qubits def build_circuit(self): """构建池化层电路""" qc = QuantumCircuit(self.n_qubits) # 两两池化:保留偶数索引量子比特 for i in range(0, self.n_qubits, 2): if i + 1 < self.n_qubits: # CNOT作为池化操作(信息合并) qc.cx(i, i+1) # 测量并重置奇数索引量子比特(实际实现中会丢弃) return qcclass QCNN:
"""量子卷积神经网络"""def __init__(self, n_qubits, n_classes=2): self.n_qubits = n_qubits self.n_classes = n_classes # 构建网络架构 self.circuit = QuantumCircuit(n_qubits) # 第一卷积层 conv1 = QuantumConvolutionalLayer(n_qubits, kernel_size=2) self.circuit.compose(conv1.build_circuit(), inplace=True) # 第一池化层 pool1 = QuantumPoolingLayer(n_qubits) self.circuit.compose(pool1.build_circuit(), inplace=True) # 第二卷积层(在剩余量子比特上) remaining_qubits = n_qubits // 2 if remaining_qubits >= 2: conv2 = QuantumConvolutionalLayer(remaining_qubits, kernel_size=2) partial_circuit = QuantumCircuit(n_qubits) partial_circuit.compose( conv2.build_circuit(), qubits=list(range(remaining_qubits)), inplace=True ) self.circuit.compose(partial_circuit, inplace=True) # 全连接层 fc = RealAmplitudes(n_qubits, reps=2) self.circuit.compose(fc, inplace=True) def __repr__(self): return f"QCNN(量子比特={self.n_qubits}, 类别数={self.n_classes})"创建4量子比特QCNN
qcnn = QCNN(n_qubits=4, n_classes=2)
print(qcnn)
print(f"\n总参数数量:{qcnn.circuit.num_parameters}")
print(f"电路深度:{qcnn.circuit.depth()}")
print("\n电路结构:")
print(qcnn.circuit.decompose())
4.3 量子循环神经网络(QRNN)
时间序列处理的量子版本
class QuantumRNN:
"""量子循环神经网络"""
def __init__(self, n_qubits, hidden_size=2):
self.n_qubits = n_qubits
self.hidden_size = hidden_size
def build_rnn_cell(self):
"""构建RNN单元"""
# 输入量子比特 + 隐藏态量子比特
total_qubits = self.n_qubits + self.hidden_size
qc = QuantumCircuit(total_qubits)
params = ParameterVector('rnn', total_qubits * 2)
# 输入门
for i in range(self.n_qubits):
qc.ry(params[i], i)
# 隐藏态更新
for i in range(self.hidden_size):
hidden_idx = self.n_qubits + i
qc.ry(params[self.n_qubits + i], hidden_idx)
# 输入与隐藏态交互
for j in range(self.n_qubits):
qc.cz(j, hidden_idx)
qc.ry(params[total_qubits + i * self.n_qubits + j], hidden_idx)
return qc
def process_sequence(self, sequence_data):
"""处理时间序列"""
# 初始化隐藏态为|0...0⟩
hidden_state = np.zeros(2**self.hidden_size)
hidden_state[0] = 1
outputs = []
for timestep, input_data in enumerate(sequence_data):
# 编码输入
qc = self.build_rnn_cell()
# 这里简化处理:实际需要将hidden_state编码到电路
# 并执行完整的量子态演化
# 测量输出
# output = measure_hidden_state(qc)
# outputs.append(output)
pass # 实际实现需要完整的量子态模拟
return outputs
# 示例:创建QRNN
qrnn = QuantumRNN(n_qubits=2, hidden_size=2)
rnn_cell = qrnn.build_rnn_cell()
print("=== 量子RNN单元 ===")
print(f"输入量子比特:{qrnn.n_qubits}")
print(f"隐藏层大小:{qrnn.hidden_size}")
print(f"总量子比特:{rnn_cell.num_qubits}")
print(f"参数数量:{rnn_cell.num_parameters}")
4.4 量子注意力机制
自注意力的量子实现
经典自注意力:
Attention(Q,K,V) = softmax(QK^T/√d_k)V
量子版本核心思想:
-
使用量子态内积计算注意力权重
-
量子叠加态表示多头注意力
class QuantumAttention:
"""量子注意力机制"""def __init__(self, n_qubits, n_heads=2): self.n_qubits = n_qubits self.n_heads = n_heads def build_attention_circuit(self): """构建注意力电路""" qc = QuantumCircuit(self.n_qubits) # Query, Key, Value编码 query_params = ParameterVector('Q', self.n_qubits) key_params = ParameterVector('K', self.n_qubits) value_params = ParameterVector('V', self.n_qubits) # Query编码 for i in range(self.n_qubits): qc.ry(query_params[i], i) qc.barrier() # Key编码(使用受控操作模拟点积) for i in range(self.n_qubits): qc.cry(key_params[i], i, (i+1) % self.n_qubits) qc.barrier() # Value编码 for i in range(self.n_qubits): qc.ry(value_params[i], i) return qc def compute_attention_scores(self, queries, keys): """计算注意力分数(使用量子核)""" from qiskit.circuit.library import ZFeatureMap feature_map = ZFeatureMap(self.n_qubits, reps=2) kernel = FidelityQuantumKernel(feature_map=feature_map) # 计算Query和Key的相似度矩阵 similarity_matrix = kernel.evaluate(queries, keys) # Softmax归一化 attention_weights = np.exp(similarity_matrix) / np.sum(np.exp(similarity_matrix), axis=1, keepdims=True) return attention_weights示例
qa = QuantumAttention(n_qubits=4, n_heads=2)
attention_circuit = qa.build_attention_circuit()print("=== 量子注意力电路 ===")
print(f"量子比特数:{qa.n_qubits}")
print(f"注意力头数:{qa.n_heads}")
print(f"参数数量:{attention_circuit.num_parameters}")
print("\n电路结构:")
print(attention_circuit)模拟注意力计算
queries = np.random.randn(5, 4) # 5个query向量
keys = np.random.randn(5, 4) # 5个key向量attention_weights = qa.compute_attention_scores(queries, keys)
plt.figure(figsize=(8, 6))
plt.imshow(attention_weights, cmap='viridis', aspect='auto')
plt.colorbar(label='注意力权重')
plt.xlabel('Key位置')
plt.ylabel('Query位置')
plt.title('量子注意力权重矩阵')
plt.tight_layout()
plt.show()print("\n注意力权重矩阵:")
print(attention_weights)
⚡ 第五章:量子优化算法 - 解决AI训练瓶颈
5.1 量子梯度下降
量子加速的梯度计算
经典梯度下降复杂度:O(nd)(n=数据量,d=维度)
量子版本:O(polylog(nd))
from qiskit.algorithms.optimizers import SPSA, QNSPSA
class QuantumGradientDescent:
"""量子梯度下降优化器"""
def __init__(self, learning_rate=0.01, max_iterations=100):
self.learning_rate = learning_rate
self.max_iterations = max_iterations
def optimize_quantum_circuit(self, circuit, objective_function, initial_params):
"""优化量子电路参数"""
params = initial_params.copy()
history = {'params': [], 'loss': []}
for iteration in range(self.max_iterations):
# 计算损失
loss = objective_function(circuit, params)
history['params'].append(params.copy())
history['loss'].append(loss)
# 使用参数偏移规则计算梯度
gradients = np.zeros_like(params)
shift = np.pi / 2
for i in range(len(params)):
# 正向偏移
params_plus = params.copy()
params_plus[i] += shift
loss_plus = objective_function(circuit, params_plus)
# 负向偏移
params_minus = params.copy()
params_minus[i] -= shift
loss_minus = objective_function(circuit, params_minus)
# 计算梯度
gradients[i] = (loss_plus - loss_minus) / 2
# 更新参数
params -= self.learning_rate * gradients
if iteration % 10 == 0:
print(f"迭代 {iteration}: 损失 = {loss:.6f}")
return params, history
# 示例:优化量子电路寻找最小值
def example_objective(circuit, params):
"""示例目标函数:Rosenbrock函数的量子版本"""
# Rosenbrock: f(x,y) = (1-x)² + 100(y-x²)²
x, y = params[0], params[1]
return (1 - x)**2 + 100 * (y - x**2)**2
# 创建简单参数化电路
param_circuit = QuantumCircuit(2)
params_vec = ParameterVector('θ', 2)
param_circuit.ry(params_vec[0], 0)
param_circuit.ry(params_vec[1], 1)
# 运行量子梯度下降
qgd = QuantumGradientDescent(learning_rate=0.01, max_iterations=50)
initial_params = np.array([0.5, 0.5])
optimized_params, history = qgd.optimize_quantum_circuit(
param_circuit,
example_objective,
initial_params
)
# 可视化优化路径
params_array = np.array(history['params'])
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history['loss'], marker='o', linestyle='-', linewidth=2, color='purple')
plt.xlabel('迭代次数')
plt.ylabel('损失值')
plt.title('量子梯度下降收敛曲线')
plt.yscale('log')
plt.grid(True, alpha=0.3)
plt.subplot(1, 2, 2)
plt.plot(params_array[:, 0], params_array[:, 1], marker='o', linestyle='-',
linewidth=2, color='teal')
plt.plot(params_array[0, 0], params_array[0, 1], 'go', markersize=10, label='起点')
plt.plot(params_array[-1, 0], params_array[-1, 1], 'r*', markersize=15, label='终点')
plt.plot(1, 1, 'ks', markersize=10, label='全局最优')
plt.xlabel('参数 θ₁')
plt.ylabel('参数 θ₂')
plt.title('参数空间优化轨迹')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print(f"\n初始参数:{initial_params}")
print(f"优化后参数:{optimized_params}")
print(f"理论最优:[1, 1]")
5.2 量子模拟退火
解决组合优化的NP-hard问题
import dimod
from dwave.system import DWaveSampler, EmbeddingComposite
class QuantumAnnealingOptimizer:
"""量子退火优化器(模拟版)"""
def __init__(self, num_reads=1000):
self.num_reads = num_reads
def solve_qubo(self, Q):
"""
求解QUBO问题
Q: QUBO矩阵(二次无约束二值优化)
目标:minimize x^T Q x, x ∈ {0,1}^n
"""
# 使用模拟退火求解器
sampler = dimod.SimulatedAnnealingSampler()
# 转换为BQM(二值二次模型)
bqm = dimod.BinaryQuadraticModel.from_qubo(Q)
# 采样
sampleset = sampler.sample(bqm, num_reads=self.num_reads)
return sampleset
def solve_portfolio_optimization(self, returns, covariance, risk_aversion=0.5):
"""
投资组合优化
目标:maximize E[R] - λ * Var[R]
E[R] = 期望收益
Var[R] = 方差(风险)
λ = 风险厌恶系数
"""
n_assets = len(returns)
# 构造QUBO矩阵
Q = {}
# 收益项(最大化收益 = 最小化负收益)
for i in range(n_assets):
Q[(i, i)] = -returns[i]
# 风险项(最小化方差)
for i in range(n_assets):
for j in range(n_assets):
if (i, j) not in Q:
Q[(i, j)] = 0
Q[(i, j)] += risk_aversion * covariance[i, j]
# 求解
sampleset = self.solve_qubo(Q)
# 提取最佳解
best_solution = sampleset.first.sample
selected_assets = [i for i in range(n_assets) if best_solution[i] == 1]
return selected_assets, sampleset
def visualize_energy_landscape(self, sampleset):
"""可视化能量分布"""
energies = [sample.energy for sample in sampleset.data()]
plt.figure(figsize=(10, 6))
plt.hist(energies, bins=50, color='skyblue', edgecolor='black', alpha=0.7)
plt.axvline(min(energies), color='r', linestyle='--', linewidth=2,
label=f'最低能量 = {min(energies):.2f}')
plt.xlabel('能量值', fontsize=12)
plt.ylabel('采样次数', fontsize=12)
plt.title('量子退火能量分布', fontsize=14)
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 示例:投资组合优化
np.random.seed(42)
# 5个资产的参数
n_assets = 5
expected_returns = np.array([0.12, 0.10, 0.08, 0.15, 0.09]) # 年化收益率
correlation = np.array([
[1.0, 0.3, 0.2, 0.1, 0.4],
[0.3, 1.0, 0.5, 0.2, 0.3],
[0.2, 0.5, 1.0, 0.3, 0.2],
[0.1, 0.2, 0.3, 1.0, 0.1],
[0.4, 0.3, 0.2, 0.1, 1.0]
])
volatility = np.array([0.20, 0.18, 0.15, 0.25, 0.17]) # 波动率
# 计算协方差矩阵
covariance = np.outer(volatility, volatility) * correlation
# 量子退火优化
qa_optimizer = QuantumAnnealingOptimizer(num_reads=5000)
selected, sampleset = qa_optimizer.solve_portfolio_optimization(
expected_returns,
covariance,
risk_aversion=0.5
)
print("=== 量子退火投资组合优化 ===")
print(f"资产数量:{n_assets}")
print(f"期望收益:{expected_returns}")
print(f"波动率:{volatility}")
print(f"\n最优投资组合(选中的资产):{selected}")
# 计算组合性能
if selected:
portfolio_return = np.sum(expected_returns[selected]) / len(selected)
portfolio_variance = np.mean(covariance[np.ix_(selected, selected)])
portfolio_vol = np.sqrt(portfolio_variance)
print(f"\n组合期望收益:{portfolio_return:.2%}")
print(f"组合波动率:{portfolio_vol:.2%}")
print(f"夏普比率:{portfolio_return / portfolio_vol:.2f}")
# 可视化能量分布
qa_optimizer.visualize_energy_landscape(sampleset)
5.3 量子Adam优化器
结合量子计算与自适应学习率
class QuantumAdam:
"""量子Adam优化器"""
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
self.learning_rate = learning_rate
self.beta1 = beta1 # 一阶矩估计的指数衰减率
self.beta2 = beta2 # 二阶矩估计的指数衰减率
self.epsilon = epsilon
self.m = None # 一阶矩向量
self.v = None # 二阶矩向量
self.t = 0 # 时间步
def initialize_moments(self, param_shape):
"""初始化矩估计"""
self.m = np.zeros(param_shape)
self.v = np.zeros(param_shape)
def update(self, params, gradients):
"""更新参数"""
if self.m is None:
self.initialize_moments(params.shape)
self.t += 1
# 更新一阶矩估计
self.m = self.beta1 * self.m + (1 - self.beta1) * gradients
# 更新二阶矩估计
self.v = self.beta2 * self.v + (1 - self.beta2) * (gradients ** 2)
# 偏差修正
m_hat = self.m / (1 - self.beta1 ** self.t)
v_hat = self.v / (1 - self.beta2 ** self.t)
# 参数更新
params_new = params - self.learning_rate * m_hat / (np.sqrt(v_hat) + self.epsilon)
return params_new
def optimize_vqe(self, hamiltonian, ansatz, max_iterations=100):
"""使用Quantum Adam优化VQE"""
# 初始化参数
params = np.random.uniform(0, 2*np.pi, ansatz.num_parameters)
history = {'params': [], 'energy': [], 'gradients': []}
for iteration in range(max_iterations):
# 计算能量
bound_circuit = ansatz.bind_parameters(params)
estimator = Estimator()
job = estimator.run([bound_circuit], [hamiltonian])
energy = job.result().values[0]
# 计算梯度(参数偏移规则)
gradients = compute_full_gradient(ansatz, hamiltonian, params)
# 更新参数
params = self.update(params, gradients)
# 记录
history['params'].append(params.copy())
history['energy'].append(energy)
history['gradients'].append(np.linalg.norm(gradients))
if iteration % 10 == 0:
print(f"迭代 {iteration}: 能量 = {energy:.6f}, "
f"梯度范数 = {np.linalg.norm(gradients):.6f}")
return params, history
# 运行Quantum Adam优化VQE
print("=== Quantum Adam优化器 ===\n")
qa_adam = QuantumAdam(learning_rate=0.05, beta1=0.9, beta2=0.999)
final_params, history = qa_adam.optimize_vqe(
H2_hamiltonian,
vqe.ansatz,
max_iterations=80
)
# 可视化对比:Adam vs 普通梯度下降
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# 能量收敛
axes[0, 0].plot(history['energy'], linewidth=2, label='Quantum Adam')
axes[0, 0].axhline(y=-1.137, color='r', linestyle='--', label='理论基态')
axes[0, 0].set_xlabel('迭代次数')
axes[0, 0].set_ylabel('能量 (Hartree)')
axes[0, 0].set_title('能量收敛曲线')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)
# 梯度范数
axes[0, 1].plot(history['gradients'], linewidth=2, color='orange')
axes[0, 1].set_xlabel('迭代次数')
axes[0, 1].set_ylabel('梯度范数')
axes[0, 1].set_title('梯度变化')
axes[0, 1].set_yscale('log')
axes[0, 1].grid(True, alpha=0.3)
# 参数演化(前4个参数)
params_array = np.array(history['params'])
for i in range(min(4, params_array.shape[1])):
axes[1, 0].plot(params_array[:, i], label=f'θ_{i}', linewidth=2)
axes[1, 0].set_xlabel('迭代次数')
axes[1, 0].set_ylabel('参数值')
axes[1, 0].set_title('参数演化')
axes[1, 0].legend()
axes[1, 0].grid(True, alpha=0.3)
# 收敛速度对比
window_size = 5
smoothed_energy = np.convolve(history['energy'],
np.ones(window_size)/window_size,
mode='valid')
axes[1, 1].plot(smoothed_energy, linewidth=2, label='平滑后能量')
axes[1, 1].set_xlabel('迭代次数')
axes[1, 1].set_ylabel('能量 (Hartree)')
axes[1, 1].set_title('平滑后收敛曲线')
axes[1, 1].legend()
axes[1, 1].grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print(f"\n最终能量:{history['energy'][-1]:.6f} Hartree")
print(f"理论基态:-1.137000 Hartree")
print(f"误差:{abs(history['energy'][-1] - (-1.137)):.6f} Hartree")
继续查看完整第二部分(第6-12章,约15000字)
💬 互动环节
- 您认为量子计算在哪个AI领域最有可能率先落地?
- 量子优势何时能在实际应用中超越经典计算?
- 如何看待量子AI对就业市场的影响?
标签 :#量子计算 #量子机器学习 #人工智能 #Qiskit #前沿技术
关注@梦帮科技 获取更多前沿技术深度解析 🚀