【API 设计之道】08 流量与配额:构建基于 Redis 的分布式限流器

大家好,我是Tony Bai。

欢迎来到我们的专栏 《API 设计之道:从设计模式到 Gin 工程化实现》的第八讲。

上一讲中,我们给 API 穿上了"防弹衣",通过幂等性设计防止了重复请求的数据污染。今天,我们要给 API 装上"红绿灯"和"安检门"。

在云原生架构中,**"吵闹的邻居(Noisy Neighbor)"**是一个经典难题。

想象一下,你的 SaaS 系统服务着 100 个租户。突然有一天,租户 A 写了一个 Bug 脚本,死循环调用你的 GetOrder 接口,QPS 瞬间飙升 100 倍。

  • 如果没有限流:数据库 CPU 飙升至 100%,租户 B、C、D 的请求全部超时,整个系统雪崩。

  • 如果有限流:租户 A 的超额请求被快速拒绝(HTTP 429),而租户 B、C、D 的服务丝毫不受影响。

限流(Rate Limiting)不仅仅是为了防攻击,更是为了保障系统的可用性(Availability)和公平性(Fairness)

很多同学在写限流时,喜欢在内存里放个 map 计数,或者用 Go 官方的 rate.Limiter。这在单机单实例下没问题,但在 Kubernetes 多副本部署的环境下,单机限流不仅由于负载均衡不均而不准确,更无法控制全局的总并发量。

今天这一讲,我们将基于 RedisGCRA(Generic Cell Rate Algorithm) 算法,在 Gin 中实现一个实用的分布式限流器。

限流的架构哲学

在开始写代码前,我们需要厘清两个容易混淆的概念:速率限制(Rate Limiting)配额管理(Quota Management)

速率限制 (Rate Limiting)

  • 目的:保护基础设施(CPU、内存、DB 连接数)不被冲垮。

  • 粒度 :通常是秒级或分钟级。例如:100 req/s

  • 行为:通过"削峰填谷",拒绝突发流量。

配额管理 (Quota / Pricing Plan)

  • 目的:商业化计费或防止资源滥用。

  • 粒度 :通常是天级或月级。例如:免费版 1000次/天专业版 无限制

  • 行为:耗尽即停。

本讲主要聚焦于速率限制,但也兼容配额管理的实现思路。

相关推荐
草莓熊Lotso39 分钟前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
岁岁种桃花儿40 分钟前
Kafka从入门到上天系列第三篇:基础架构推演+基础组件图形推演
分布式·kafka
大模型玩家七七43 分钟前
基于语义切分 vs 基于结构切分的实际差异
java·开发语言·数据库·安全·batch
岳麓丹枫0012 小时前
PostgreSQL 中 pg_wal 目录里的 .ready .done .history 文件的生命周期
数据库·postgresql
陌上丨8 小时前
Redis的Key和Value的设计原则有哪些?
数据库·redis·缓存
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
ccecw8 小时前
Mysql ONLY_FULL_GROUP_BY模式详解、group by非查询字段报错
数据库·mysql
JH30738 小时前
达梦数据库与MySQL的核心差异解析:从特性到实践
数据库·mysql
数据知道9 小时前
PostgreSQL 核心原理:如何利用多核 CPU 加速大数据量扫描(并行查询)
数据库·postgresql
麦聪聊数据10 小时前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构