一张Transformer-LSTM模型的结构图

一个典型的 Transformer-LSTM 混合模型 架构。这种设计结合了 Transformer 处理全局关联的能力和 LSTM 处理时序序列的优势。

1. 混合分层架构 (Hybrid Layering)

模型并没有简单地替换某个组件,而是采用串联堆叠的方式:

  • 底层为 Transformer Encoder:作为特征提取器,利用自注意力机制(Self-Attention)捕捉输入序列中任意两个位置之间的全局依赖关系。
  • 顶层为 LSTM 层:在 Transformer 提取的深度特征基础上,进一步强化对时间序列方向性和局部连续性的建模。

2. 核心组件的功能分配

  • Transformer Encoder (全局感知)

  • 多头注意力 (Multi-Head Attention):让模型能够同时关注序列中不同位置的信息,解决了传统 RNN 难以处理超长距离依赖的问题。

  • 位置编码 (Positional Encoding):由于 Transformer 本身不具备处理顺序的能力,这一层为输入数据注入了位置信息。

  • LSTM Layer (时序精炼)

  • 门控机制 (Forget/Input/Output Gates):LSTM 通过遗忘门和输入门精细地控制信息的流转,能够捕捉更加细腻的局部时序波动。

  • 序列平滑:在某些预测任务中,LSTM 可以对 Transformer 输出的特征进行某种程度的"平滑"或"序列化约束"。


3. 该结构的优势

与单一模型相比,这种混合结构具有以下优点:

特点 优势描述
特征提取能力 Transformer 能够比 LSTM 更高效地从原始数据中提取高阶特征。
并行计算 底层的 Transformer 部分可以实现高度并行化,提升训练效率。
时序稳定性 在序列预测(如电力负荷、股票、气象预测)中,加入 LSTM 往往能提高模型对时间方向敏感性的捕捉。
缓解梯度问题 Transformer 减轻了 LSTM 在处理极长序列时的梯度消失风险,而 LSTM 则增强了对短期趋势的建模。

4. 典型应用场景

这种结构常用于 复杂时间序列预测。Transformer 负责识别长期的季节性、周期性规律,而 LSTM 负责捕捉短期的趋势和突发性的波动。

相关推荐
聆风吟º5 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子5 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5776 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h6 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切6 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
学电子她就能回来吗8 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_8 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七8 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang9 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习