一张Transformer-LSTM模型的结构图

一个典型的 Transformer-LSTM 混合模型 架构。这种设计结合了 Transformer 处理全局关联的能力和 LSTM 处理时序序列的优势。

1. 混合分层架构 (Hybrid Layering)

模型并没有简单地替换某个组件,而是采用串联堆叠的方式:

  • 底层为 Transformer Encoder:作为特征提取器,利用自注意力机制(Self-Attention)捕捉输入序列中任意两个位置之间的全局依赖关系。
  • 顶层为 LSTM 层:在 Transformer 提取的深度特征基础上,进一步强化对时间序列方向性和局部连续性的建模。

2. 核心组件的功能分配

  • Transformer Encoder (全局感知)

  • 多头注意力 (Multi-Head Attention):让模型能够同时关注序列中不同位置的信息,解决了传统 RNN 难以处理超长距离依赖的问题。

  • 位置编码 (Positional Encoding):由于 Transformer 本身不具备处理顺序的能力,这一层为输入数据注入了位置信息。

  • LSTM Layer (时序精炼)

  • 门控机制 (Forget/Input/Output Gates):LSTM 通过遗忘门和输入门精细地控制信息的流转,能够捕捉更加细腻的局部时序波动。

  • 序列平滑:在某些预测任务中,LSTM 可以对 Transformer 输出的特征进行某种程度的"平滑"或"序列化约束"。


3. 该结构的优势

与单一模型相比,这种混合结构具有以下优点:

特点 优势描述
特征提取能力 Transformer 能够比 LSTM 更高效地从原始数据中提取高阶特征。
并行计算 底层的 Transformer 部分可以实现高度并行化,提升训练效率。
时序稳定性 在序列预测(如电力负荷、股票、气象预测)中,加入 LSTM 往往能提高模型对时间方向敏感性的捕捉。
缓解梯度问题 Transformer 减轻了 LSTM 在处理极长序列时的梯度消失风险,而 LSTM 则增强了对短期趋势的建模。

4. 典型应用场景

这种结构常用于 复杂时间序列预测。Transformer 负责识别长期的季节性、周期性规律,而 LSTM 负责捕捉短期的趋势和突发性的波动。

相关推荐
Blossom.1183 小时前
AI边缘计算实战:基于MNN框架的手机端文生图引擎实现
人工智能·深度学习·yolo·目标检测·智能手机·边缘计算·mnn
胡伯来了4 小时前
09 Transformers - 训练
人工智能·pytorch·深度学习·transformer·transformers
有Li4 小时前
MIRAGE:针对嘈杂环境鲁棒性的医学图像-文本预训练|文献速递-医疗影像分割与目标检测最新技术
论文阅读·人工智能·深度学习·计算机视觉·文献·医学生
胡伯来了4 小时前
12 Transformers - 使用Pipeline处理计算机视觉
人工智能·计算机视觉·transformer·transformers·大数据模型
胡伯来了5 小时前
10 Transformers - 任务容器类 Pipeline
人工智能·pipeline·transformer·transformers·大数据模型
STLearner5 小时前
AAAI 2026 | 时空数据(Spatial-temporal)论文总结[上](时空预测,轨迹挖掘,自动驾驶等)
大数据·人工智能·python·深度学习·机器学习·数据挖掘·自动驾驶
一招定胜负5 小时前
神经网络入门
人工智能·深度学习·神经网络
deephub5 小时前
Pydantic-DeepAgents:基于 Pydantic-AI 的轻量级生产级 Agent 框架
人工智能·python·深度学习·大语言模型·ai-agent
八月瓜科技6 小时前
工业和信息化部国际经济技术合作中心第五党支部与八月瓜科技党支部开展主题党日活动暨联学联建活动
大数据·人工智能·科技·深度学习·机器人·娱乐