神经网络的调参顺序

很多人在做深度学习实验时,参数也调了,搜索空间也拉满了,但效果就是不稳定。

其实问题往往不在"参数不够多",而在于------调参顺序是乱的。

调参不是玄学,而是有优先级和逻辑顺序的。

一、先保证"能稳定训练",再谈效果

在任何调参之前,先确认一件事:模型能不能正常收敛。

重点看三点:

  • loss 是否持续下降,而不是剧烈震荡
  • 训练集和验证集曲线是否基本合理
  • 不出现 NaN、梯度爆炸、直接崩掉的情况

如果这一步都不稳定,后面的指标对比是没有意义的。

二、学习率(Learning Rate)

学习率永远是最重要的参数,没有之一。

经验:

  • loss 不降 → 学习率可能太大
  • loss 降得很慢 → 学习率可能太小
  • loss 上下震荡 → 学习率大概率不合适

在不确定时,先用一个相对偏小但稳定的学习率,确保模型能学,再考虑调大。
记住一句话:学习率没调好,其他参数基本都是噪声。

三、batch size 与优化器

在学习率基本可用之后,再调整这两项。

1、batch size:

  • 小 batch:噪声大,泛化好,但不稳定
  • 大 batch:收敛稳,但容易过拟合

2、优化器

  • Adam / AdamW:收敛快,调参友好
  • SGD:泛化好,但对学习率更敏感

通常建议:先用 Adam 类优化器跑通流程,再考虑是否换 SGD。

四、正则化相关参数

这一步是为了解决过拟合问题。常见可调项包括:weight decay、dropout、label smoothing

调参逻辑是:

  • 训练集好、验证集差 → 加强正则
  • 两边都差 → 别急着加正则,先回头看学习率和模型容量

五、训练策略与技巧

在模型基本稳定后,再考虑这些"锦上添花"的东西:

  • 学习率调度策略(cosine、step、warmup)
  • EMA、梯度裁剪
  • 混合精度、梯度累计

这些通常带来的是小而稳定的提升,而不是质变。

六、最后才是模型结构相关参数

这是最容易被"提前动手"的一层,但应该放在最后。包括:

  • 网络深度 / 宽度
  • 模块数量
  • 隐藏维度

如果前面的参数没固定好,结构怎么改,结论都不可靠。

总结一下,推荐的调参顺序是:

1️⃣ 学习率

2️⃣ batch size & 优化器

3️⃣ 正则化参数

4️⃣ 训练策略

5️⃣ 模型结构

每一步只动一个变量,并且记录结果。

调参本质上是一次次假设验证,而不是盲目搜索。
顺序对了,实验效率自然就上来了。

相关推荐
杭州泽沃电子科技有限公司3 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao4 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北126 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887826 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰7 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技7 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_7 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1518 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai8 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205318 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构