20251201换根DP总结

引子

说白了就是两次 DFS,第一次 DFS 预处理深度,点权和之类的信息,第二次 DFS 开始运行换根动态规划,题目比较简单的都很板。

P3478 [POI 2008] STA-Station

换根DP模板。

"换根"过程参考图。

原图
1
2
3
4
5
6

假设现在dfs到了1,枚举儿子时找到了2,那么预处理得知dp[1]=11,换根之后示意图。
2
1
3
4
5
6

改变了什么?显然目前根结点在原图上的向上子树距离目前根节点的距离+1,其余结点距离目前根节点的距离-1,那么动态转移方程为dp[v]=dp[x]-sz[v]+(n-sz[v]),也可以写成dp[v]=dp[x]-sz[v]*2+n

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
vector<int> E[1000005];
long long n,dp[1000005],dep[1000005],sz[1000005];
//    结点数 DP数组        深度        子树结点数
void dfs(int x,int fa){
    dp[1]+=dep[x];//先求出根节点为1的答案
    sz[x]=1;//自己算一个
    for(int i=0;i<E[x].size();i++){
        int v=E[x][i];
        if(v==fa)continue;
        dep[v]=dep[x]+1;//直接求
        dfs(v,x);
        sz[x]+=sz[v];//加上儿子的
    }
}
void dfs1(int x,int fa){
    for(int i=0;i<E[x].size();i++){
        int v=E[x][i];//儿子节点
        if(v==fa)continue;
        dp[v]=dp[x]-sz[v]+(n-sz[v]);//核心代码,其余全是预处理
        //计算儿子结点的DP
        dfs1(v,x);
    }
}
int main(){
    cin>>n;
    for(int i=1;i<n;i++){
        int u,v;
        cin>>u>>v;
        E[u].push_back(v);
        E[v].push_back(u);
    }
    dfs(1,0);
    dfs1(1,0);
    long long mn=0,m;//看题
    for(int i=1;i<=n;i++){
        if(dp[i]>mn){
            mn=dp[i];
            m=i;
        }
    }
    cout<<m;
    return 0;
}
相关推荐
Wei&Yan6 分钟前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
团子的二进制世界40 分钟前
G1垃圾收集器是如何工作的?
java·jvm·算法
吃杠碰小鸡44 分钟前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨44 分钟前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long31644 分钟前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼1 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
熊文豪1 小时前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann
熊猫_豆豆1 小时前
YOLOP车道检测
人工智能·python·算法
艾莉丝努力练剑1 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
偷吃的耗子2 小时前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn