阶跃星辰(StepFun)已于近期正式发布了开源图像生成模型 NextStep

根据最新信息,阶跃星辰(StepFun)已于近期正式发布了开源图像生成模型 NextStep,这标志着其自回归图像生成系列模型的一次重要升级。

下面是其核心信息汇总:

项目 详情
发布状态 已正式发布并开源
模型系列 NextStep
前代版本 NextStep-1(140亿参数)
参数量 150亿参数
核心改进 解决前代可视化故障,提高图像保真度和训练稳定性
关键技术 扩展训练 + Flow-based RL(基于流的强化学习)后训练范式
访问方式 模型权重已在 Hugging Face 平台开源

主要改进与技术特点

这次更新主要针对前代模型的已知问题进行优化,主要特点如下:

  • 修复可视化故障 :NextStep-1.1的核心目标是解决其前代版本 NextStep-1 中出现的图像"可视化故障"或"可视化异常问题",以提升输出的专业度。

  • 提升图像保真度与训练稳定性

    • 模型通过 "Flow-based RL" 的强化学习后训练方法,改善了生成图像的纹理细节 ,并旨在减少视觉伪影

    • 官方介绍称,这一技术也旨在解决自回归流基模型在强化学习中固有的数值不稳定性问题

与前代模型的区别

为了让你更清楚地了解此次升级,以下是NextStep-1.1与其前代NextStep-1的主要区别:

对比维度 NextStep-1 (前代) NextStep-1.1 (当前版本)
参数量 140亿参数 150亿参数
技术焦点 自回归+连续令牌+轻量级流匹配头 修复可视化故障Flow-based RL
主要目标 验证自回归模型生成高质量图像的可行性 提升图像质量、输出稳定性和训练稳定性

如何获取与使用

  • 开源信息 :该模型的权重文件已在 Hugging Face 平台上开源,可供下载和研究。

  • 性能数据:目前的公开信息中,尚未提及NextStep-1.1在具体基准测试(如WISE、GenEval等)中的详细分数。其性能表现,尤其是在与前代或主流扩散模型的对比上,有待社区进一步的验证和评估。

  • 硬件与部署 :参考前代NextStep-1的经验,这类大型自回归模型通常需要较强的GPU计算资源(如CUDA设备)进行推理。具体的硬件要求和部署文档,建议查阅即将发布的官方仓库说明。

相关推荐
一切尽在,你来6 分钟前
第二章 预告内容
人工智能·langchain·ai编程
23遇见10 分钟前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee19 分钟前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
光泽雨1 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19001 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…1 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec1 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_1 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝1 小时前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha1 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘