CS:APP Bomb Lab Report
Name SUNCHAOYI
First use objdump -d bomb > bomb.asm to get its assmebly.
Phase_1
assembly
0000000000400ee0 <phase_1>:
400ee0: 48 83 ec 08 sub $0x8,%rsp
400ee4: be 00 24 40 00 mov $0x402400,%esi
400ee9: e8 4a 04 00 00 call 401338 <strings_not_equal>
400eee: 85 c0 test %eax,%eax
400ef0: 74 05 je 400ef7 <phase_1+0x17>
400ef2: e8 43 05 00 00 call 40143a <explode_bomb>
400ef7: 48 83 c4 08 add $0x8,%rsp
400efb: c3 ret
-
mov $0x402400,%esi0x402400contains the password string. Use GDB'sx/scommand to display the string at that memory address:gdbgdb bomb (gdb) x/s 0x402400
The Phase_1 answer is Border relations with Canada have never been better.
Phase_2
assembly
0000000000400efc <phase_2>:
400efc: 55 push %rbp
400efd: 53 push %rbx
400efe: 48 83 ec 28 sub $0x28,%rsp
400f02: 48 89 e6 mov %rsp,%rsi
400f05: e8 52 05 00 00 call 40145c <read_six_numbers>
400f0a: 83 3c 24 01 cmpl $0x1,(%rsp)
400f0e: 74 20 je 400f30 <phase_2+0x34>
400f10: e8 25 05 00 00 call 40143a <explode_bomb>
400f15: eb 19 jmp 400f30 <phase_2+0x34>
400f17: 8b 43 fc mov -0x4(%rbx),%eax
400f1a: 01 c0 add %eax,%eax
400f1c: 39 03 cmp %eax,(%rbx)
400f1e: 74 05 je 400f25 <phase_2+0x29>
400f20: e8 15 05 00 00 call 40143a <explode_bomb>
400f25: 48 83 c3 04 add $0x4,%rbx
400f29: 48 39 eb cmp %rbp,%rbx
400f2c: 75 e9 jne 400f17 <phase_2+0x1b>
400f2e: eb 0c jmp 400f3c <phase_2+0x40>
400f30: 48 8d 5c 24 04 lea 0x4(%rsp),%rbx
400f35: 48 8d 6c 24 18 lea 0x18(%rsp),%rbp
400f3a: eb db jmp 400f17 <phase_2+0x1b>
400f3c: 48 83 c4 28 add $0x28,%rsp
400f40: 5b pop %rbx
400f41: 5d pop %rbp
400f42: c3 ret
-
cmpl $0x1,(%rsp)&je 400f30 <phase_2+0x34>If the value at the top of the stack is 1, jump to address
0x400f30. -
lea 0x4(%rsp),%rbx&lea 0x18(%rsp),%rbp&jmp 400f17 <phase_2+0x1b>%rbxis set to point to the second element of the array (&numbers[1]).%rbpis set to point just past the last element (&numbers[6]), since0x18=6×4=24= 6 \times 4 = 24=6×4=24 bytes.Execution then jumps to the loop body at
400f17. -
400f17∼\sim∼400f2c(loop body)Load the previous element (
numbers[i-1]) into%eax, double it, and compare the result with the current element (numbers[i]).Only if
numbers[i] == 2 * numbers[i-1]does the loop continue; otherwise the bomb explodes.After processing all six numbers, control jumps to
400f3c(loop exit).
The required sequence for Phase 2 is therefore 1 2 4 8 16 32.
Phase_3
assembly
0000000000400f43 <phase_3>:
400f43: 48 83 ec 18 sub $0x18,%rsp
400f47: 48 8d 4c 24 0c lea 0xc(%rsp),%rcx
400f4c: 48 8d 54 24 08 lea 0x8(%rsp),%rdx
400f51: be cf 25 40 00 mov $0x4025cf,%esi
400f56: b8 00 00 00 00 mov $0x0,%eax
400f5b: e8 90 fc ff ff call 400bf0 <__isoc99_sscanf@plt>
400f60: 83 f8 01 cmp $0x1,%eax
400f63: 7f 05 jg 400f6a <phase_3+0x27>
400f65: e8 d0 04 00 00 call 40143a <explode_bomb>
400f6a: 83 7c 24 08 07 cmpl $0x7,0x8(%rsp)
400f6f: 77 3c ja 400fad <phase_3+0x6a>
400f71: 8b 44 24 08 mov 0x8(%rsp),%eax
400f75: ff 24 c5 70 24 40 00 jmp *0x402470(,%rax,8)
400f7c: b8 cf 00 00 00 mov $0xcf,%eax
400f81: eb 3b jmp 400fbe <phase_3+0x7b>
400f83: b8 c3 02 00 00 mov $0x2c3,%eax
400f88: eb 34 jmp 400fbe <phase_3+0x7b>
400f8a: b8 00 01 00 00 mov $0x100,%eax
400f8f: eb 2d jmp 400fbe <phase_3+0x7b>
400f91: b8 85 01 00 00 mov $0x185,%eax
400f96: eb 26 jmp 400fbe <phase_3+0x7b>
400f98: b8 ce 00 00 00 mov $0xce,%eax
400f9d: eb 1f jmp 400fbe <phase_3+0x7b>
400f9f: b8 aa 02 00 00 mov $0x2aa,%eax
400fa4: eb 18 jmp 400fbe <phase_3+0x7b>
400fa6: b8 47 01 00 00 mov $0x147,%eax
400fab: eb 11 jmp 400fbe <phase_3+0x7b>
400fad: e8 88 04 00 00 call 40143a <explode_bomb>
400fb2: b8 00 00 00 00 mov $0x0,%eax
400fb7: eb 05 jmp 400fbe <phase_3+0x7b>
400fb9: b8 37 01 00 00 mov $0x137,%eax
400fbe: 3b 44 24 0c cmp 0xc(%rsp),%eax
400fc2: 74 05 je 400fc9 <phase_3+0x86>
400fc4: e8 71 04 00 00 call 40143a <explode_bomb>
400fc9: 48 83 c4 18 add $0x18,%rsp
400fcd: c3 ret
-
mov $0x4025cf,%esi&cmp $0x1,%eax&jg 400f6a <phase_3+0x27>Using
(gdb) x/s 0x4025cfshows"%d %d", meaning the input must be two integers separated by a space.If
sscanfreturns a value ≤1\le 1≤1, the bomb explodes. -
lea 0xc(%rsp),%rcx&lea 0x8(%rsp),%rdx&cmpl $0x7,0x8(%rsp)&ja 400fad <phase_3+0x6a>%rdxpoints to where the first integer is stored (0x8(%rsp)), and%rcxpoints to the second integer (0xc(%rsp)).The first integer must be ≤7\le 7≤7, otherwise the bomb explodes.
-
400f7c∼\sim∼400fbe(switch body)Each case loads a specific immediate value into
%eax, then jumps to a common check at400fbe.There, the loaded value is compared with the second integer. Only if they are equal does the phase pass.
From the jump‑table cases we obtain the valid pairs:
0 207 / 1 311 / 2 707 / 3 256 / 4 389 / 5 206 / 6 682 / 7 327
Any one of these pairs is a correct solution.
Phase_4
Assembly
0000000000400fce <func4>:
400fce: 48 83 ec 08 sub $0x8,%rsp
400fd2: 89 d0 mov %edx,%eax
400fd4: 29 f0 sub %esi,%eax
400fd6: 89 c1 mov %eax,%ecx
400fd8: c1 e9 1f shr $0x1f,%ecx
400fdb: 01 c8 add %ecx,%eax
400fdd: d1 f8 sar $1,%eax
400fdf: 8d 0c 30 lea (%rax,%rsi,1),%ecx
400fe2: 39 f9 cmp %edi,%ecx
400fe4: 7e 0c jle 400ff2 <func4+0x24>
400fe6: 8d 51 ff lea -0x1(%rcx),%edx
400fe9: e8 e0 ff ff ff call 400fce <func4>
400fee: 01 c0 add %eax,%eax
400ff0: eb 15 jmp 401007 <func4+0x39>
400ff2: b8 00 00 00 00 mov $0x0,%eax
400ff7: 39 f9 cmp %edi,%ecx
400ff9: 7d 0c jge 401007 <func4+0x39>
400ffb: 8d 71 01 lea 0x1(%rcx),%esi
400ffe: e8 cb ff ff ff call 400fce <func4>
401003: 8d 44 00 01 lea 0x1(%rax,%rax,1),%eax
401007: 48 83 c4 08 add $0x8,%rsp
40100b: c3 ret
000000000040100c <phase_4>:
40100c: 48 83 ec 18 sub $0x18,%rsp
401010: 48 8d 4c 24 0c lea 0xc(%rsp),%rcx
401015: 48 8d 54 24 08 lea 0x8(%rsp),%rdx
40101a: be cf 25 40 00 mov $0x4025cf,%esi
40101f: b8 00 00 00 00 mov $0x0,%eax
401024: e8 c7 fb ff ff call 400bf0 <__isoc99_sscanf@plt>
401029: 83 f8 02 cmp $0x2,%eax
40102c: 75 07 jne 401035 <phase_4+0x29>
40102e: 83 7c 24 08 0e cmpl $0xe,0x8(%rsp)
401033: 76 05 jbe 40103a <phase_4+0x2e>
401035: e8 00 04 00 00 call 40143a <explode_bomb>
40103a: ba 0e 00 00 00 mov $0xe,%edx
40103f: be 00 00 00 00 mov $0x0,%esi
401044: 8b 7c 24 08 mov 0x8(%rsp),%edi
401048: e8 81 ff ff ff call 400fce <func4>
40104d: 85 c0 test %eax,%eax
40104f: 75 07 jne 401058 <phase_4+0x4c>
401051: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)
401056: 74 05 je 40105d <phase_4+0x51>
401058: e8 dd 03 00 00 call 40143a <explode_bomb>
40105d: 48 83 c4 18 add $0x18,%rsp
401061: c3 ret
-
mov $0x4025cf,%esi&cmp $0x2,%eax&jne 401035 <phase_4+0x29>Using
(gdb) x/s 0x4025cfshows"%d %d", meaning the input must be two integers separated by a space.If
sscanfreturns a value ≠2\neq 2=2, the bomb explodes. -
lea 0xc(%rsp),%rcx&lea 0x8(%rsp),%rdx&cmpl $0xe,0x8(%rsp)&cmpl $0x0,0xc(%rsp)%rdxpoints to where the first integer is stored (0x8(%rsp)), and%rcxpoints to the second integer (0xc(%rsp)).The first integer must be ≤14\le 14≤14, the second integer must exactly 000, otherwise the bomb explodes.
-
mov $0xe,%edx&mov $0x0,%esi&mov 0x8(%rsp),%edi& call 400fce&cmpl $0x0,0xc(%rsp)`Three arguments are passed to
func4, i.e.func4(first_number,0,14).The function must return 0, otherwise the bomb explodes.
-
<func4>assembly translated to C languagecint func4(int target, int low, int high) { int mid = low + (high - low) / 2; //since low = 0,high = 14 so the sign bit = 0, which can be ignored. if (mid <= target) { if (mid >= target) return 0; // i.e. target can be found else { low = mid + 1; return 2 * func4 (target,low,high) + 1; } } else { high = mid - 1; return 2 * func4 (target,low,high); } }
The function returns 000 only when first_number lies on the "mid‑point path" of the binary search.The valid values for the first number are 0,1,3,70,1,3,70,1,3,7.
Combining all conditions, the correct answers for Phase_4 are any of the following pairs:
0 0 / 1 0 / 3 0 / 7 0
Phase_5
Assembly
0000000000401062 <phase_5>:
401062: 53 push %rbx
401063: 48 83 ec 20 sub $0x20,%rsp
401067: 48 89 fb mov %rdi,%rbx
40106a: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
401071: 00 00
401073: 48 89 44 24 18 mov %rax,0x18(%rsp)
401078: 31 c0 xor %eax,%eax
40107a: e8 9c 02 00 00 call 40131b <string_length>
40107f: 83 f8 06 cmp $0x6,%eax
401082: 74 4e je 4010d2 <phase_5+0x70>
401084: e8 b1 03 00 00 call 40143a <explode_bomb>
401089: eb 47 jmp 4010d2 <phase_5+0x70>
40108b: 0f b6 0c 03 movzbl (%rbx,%rax,1),%ecx
40108f: 88 0c 24 mov %cl,(%rsp)
401092: 48 8b 14 24 mov (%rsp),%rdx
401096: 83 e2 0f and $0xf,%edx
401099: 0f b6 92 b0 24 40 00 movzbl 0x4024b0(%rdx),%edx
4010a0: 88 54 04 10 mov %dl,0x10(%rsp,%rax,1)
4010a4: 48 83 c0 01 add $0x1,%rax
4010a8: 48 83 f8 06 cmp $0x6,%rax
4010ac: 75 dd jne 40108b <phase_5+0x29>
4010ae: c6 44 24 16 00 movb $0x0,0x16(%rsp)
4010b3: be 5e 24 40 00 mov $0x40245e,%esi
4010b8: 48 8d 7c 24 10 lea 0x10(%rsp),%rdi
4010bd: e8 76 02 00 00 call 401338 <strings_not_equal>
4010c2: 85 c0 test %eax,%eax
4010c4: 74 13 je 4010d9 <phase_5+0x77>
4010c6: e8 6f 03 00 00 call 40143a <explode_bomb>
4010cb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
4010d0: eb 07 jmp 4010d9 <phase_5+0x77>
4010d2: b8 00 00 00 00 mov $0x0,%eax
4010d7: eb b2 jmp 40108b <phase_5+0x29>
4010d9: 48 8b 44 24 18 mov 0x18(%rsp),%rax
4010de: 64 48 33 04 25 28 00 xor %fs:0x28,%rax
4010e5: 00 00
4010e7: 74 05 je 4010ee <phase_5+0x8c>
4010e9: e8 42 fa ff ff call 400b30 <__stack_chk_fail@plt>
4010ee: 48 83 c4 20 add $0x20,%rsp
4010f2: 5b pop %rbx
4010f3: c3 ret
-
call 40131b <string_length>&cmp $0x6,%eaxThe input must be a string of exactly six characters.
-
40108b∼\sim∼4010ac(loop body)For each character
input[i]:- Take its low‑order 4 bits (
input[i] & 0xF) as an index (0∼150 \sim 150∼15). - Use that index to look up a character from a table stored at address
0x4024b0. - Store the looked‑up character into an output buffer on the stack.
Examining the table
(gdb) x/s 0x4024b0, getmaduiersnfotvbylSo you think you can stop the bomb with ctrl-c, do you?. The relevant part is the first 16 characters:maduiersnfotvbyl.The converted six‑character string must equal the string at
0x40245e. Checking(gdb) x/s 0x40245e, getflyers.Hence the condition for each position iii is:
table[input[i] & 0xF] == "flyers"[i] - Take its low‑order 4 bits (
Therefore, the answer is ionefg.
Phase_6
Assembly
00000000004010f4 <phase_6>:
4010f4: 41 56 push %r14
4010f6: 41 55 push %r13
4010f8: 41 54 push %r12
4010fa: 55 push %rbp
4010fb: 53 push %rbx
4010fc: 48 83 ec 50 sub $0x50,%rsp
401100: 49 89 e5 mov %rsp,%r13
401103: 48 89 e6 mov %rsp,%rsi
401106: e8 51 03 00 00 call 40145c <read_six_numbers>
40110b: 49 89 e6 mov %rsp,%r14
40110e: 41 bc 00 00 00 00 mov $0x0,%r12d
401114: 4c 89 ed mov %r13,%rbp
401117: 41 8b 45 00 mov 0x0(%r13),%eax
40111b: 83 e8 01 sub $0x1,%eax
40111e: 83 f8 05 cmp $0x5,%eax
401121: 76 05 jbe 401128 <phase_6+0x34>
401123: e8 12 03 00 00 call 40143a <explode_bomb>
401128: 41 83 c4 01 add $0x1,%r12d
40112c: 41 83 fc 06 cmp $0x6,%r12d
401130: 74 21 je 401153 <phase_6+0x5f>
401132: 44 89 e3 mov %r12d,%ebx
401135: 48 63 c3 movslq %ebx,%rax
401138: 8b 04 84 mov (%rsp,%rax,4),%eax
40113b: 39 45 00 cmp %eax,0x0(%rbp)
40113e: 75 05 jne 401145 <phase_6+0x51>
401140: e8 f5 02 00 00 call 40143a <explode_bomb>
401145: 83 c3 01 add $0x1,%ebx
401148: 83 fb 05 cmp $0x5,%ebx
40114b: 7e e8 jle 401135 <phase_6+0x41>
40114d: 49 83 c5 04 add $0x4,%r13
401151: eb c1 jmp 401114 <phase_6+0x20>
401153: 48 8d 74 24 18 lea 0x18(%rsp),%rsi
401158: 4c 89 f0 mov %r14,%rax
40115b: b9 07 00 00 00 mov $0x7,%ecx
401160: 89 ca mov %ecx,%edx
401162: 2b 10 sub (%rax),%edx
401164: 89 10 mov %edx,(%rax)
401166: 48 83 c0 04 add $0x4,%rax
40116a: 48 39 f0 cmp %rsi,%rax
40116d: 75 f1 jne 401160 <phase_6+0x6c>
40116f: be 00 00 00 00 mov $0x0,%esi
401174: eb 21 jmp 401197 <phase_6+0xa3>
401176: 48 8b 52 08 mov 0x8(%rdx),%rdx
40117a: 83 c0 01 add $0x1,%eax
40117d: 39 c8 cmp %ecx,%eax
40117f: 75 f5 jne 401176 <phase_6+0x82>
401181: eb 05 jmp 401188 <phase_6+0x94>
401183: ba d0 32 60 00 mov $0x6032d0,%edx
401188: 48 89 54 74 20 mov %rdx,0x20(%rsp,%rsi,2)
40118d: 48 83 c6 04 add $0x4,%rsi
401191: 48 83 fe 18 cmp $0x18,%rsi
401195: 74 14 je 4011ab <phase_6+0xb7>
401197: 8b 0c 34 mov (%rsp,%rsi,1),%ecx
40119a: 83 f9 01 cmp $0x1,%ecx
40119d: 7e e4 jle 401183 <phase_6+0x8f>
40119f: b8 01 00 00 00 mov $0x1,%eax
4011a4: ba d0 32 60 00 mov $0x6032d0,%edx
4011a9: eb cb jmp 401176 <phase_6+0x82>
4011ab: 48 8b 5c 24 20 mov 0x20(%rsp),%rbx
4011b0: 48 8d 44 24 28 lea 0x28(%rsp),%rax
4011b5: 48 8d 74 24 50 lea 0x50(%rsp),%rsi
4011ba: 48 89 d9 mov %rbx,%rcx
4011bd: 48 8b 10 mov (%rax),%rdx
4011c0: 48 89 51 08 mov %rdx,0x8(%rcx)
4011c4: 48 83 c0 08 add $0x8,%rax
4011c8: 48 39 f0 cmp %rsi,%rax
4011cb: 74 05 je 4011d2 <phase_6+0xde>
4011cd: 48 89 d1 mov %rdx,%rcx
4011d0: eb eb jmp 4011bd <phase_6+0xc9>
4011d2: 48 c7 42 08 00 00 00 movq $0x0,0x8(%rdx)
4011d9: 00
4011da: bd 05 00 00 00 mov $0x5,%ebp
4011df: 48 8b 43 08 mov 0x8(%rbx),%rax
4011e3: 8b 00 mov (%rax),%eax
4011e5: 39 03 cmp %eax,(%rbx)
4011e7: 7d 05 jge 4011ee <phase_6+0xfa>
4011e9: e8 4c 02 00 00 call 40143a <explode_bomb>
4011ee: 48 8b 5b 08 mov 0x8(%rbx),%rbx
4011f2: 83 ed 01 sub $0x1,%ebp
4011f5: 75 e8 jne 4011df <phase_6+0xeb>
4011f7: 48 83 c4 50 add $0x50,%rsp
4011fb: 5b pop %rbx
4011fc: 5d pop %rbp
4011fd: 41 5c pop %r12
4011ff: 41 5d pop %r13
401201: 41 5e pop %r14
401203: c3 ret
-
4010f4∼\sim∼40110eCalls
read_six_numbersto read six integers into an array on the stack. -
401114∼\sim∼401151The double loop checks
1 <= number[i] <= 6(subtracting 1 converts the range check into an unsigned comparison with 5) and ensures all six numbers are distinct. -
401153∼\sim∼40116dEach number is transformed as
number[i] = 7 - number[i] -
40116f∼\sim∼4011a9The starting address
0x6032d0is examined. Inspection via(gdb) x/128x 0x6032d0reveals a linked-list structure.0x6032d0 <node1>: 0x4c 0x01 0x00 0x00 0x01 0x00 0x00 0x00 0x6032d8 <node1+8>: 0xe0 0x32 0x60 0x00 0x00 0x00 0x00 0x00 0x6032e0 <node2>: 0xa8 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x6032e8 <node2+8>: 0xf0 0x32 0x60 0x00 0x00 0x00 0x00 0x00 0x6032f0 <node3>: 0x9c 0x03 0x00 0x00 0x03 0x00 0x00 0x00 0x6032f8 <node3+8>: 0x00 0x33 0x60 0x00 0x00 0x00 0x00 0x00 0x603300 <node4>: 0xb3 0x02 0x00 0x00 0x04 0x00 0x00 0x00 0x603308 <node4+8>: 0x10 0x33 0x60 0x00 0x00 0x00 0x00 0x00 0x603310 <node5>: 0xdd 0x01 0x00 0x00 0x05 0x00 0x00 0x00 0x603318 <node5+8>: 0x20 0x33 0x60 0x00 0x00 0x00 0x00 0x00 0x603320 <node6>: 0xbb 0x01 0x00 0x00 0x06 0x00 0x00 0x00 0x603328 <node6+8>: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00Each node occupies 16 bits (value (4 bits), id (4 bits) address (8 bits)) organized in Little-Endian format. This structure clearly defines a singly linked list.
node iii value address next pointer 111 0x14c\texttt{0x14c}0x14c 0x6032d0\texttt{0x6032d0}0x6032d0 0x6032e0\texttt{0x6032e0}0x6032e0 222 0xa8\texttt{0xa8}0xa8 0x6032e0\texttt{0x6032e0}0x6032e0 0x6032f0\texttt{0x6032f0}0x6032f0 333 0x39c\texttt{0x39c}0x39c 0x6032f0\texttt{0x6032f0}0x6032f0 0x603300\texttt{0x603300}0x603300 444 0x2b3\texttt{0x2b3}0x2b3 0x603300\texttt{0x603300}0x603300 0x603310\texttt{0x603310}0x603310 555 0x1dd\texttt{0x1dd}0x1dd 0x603310\texttt{0x603310}0x603310 0x603320\texttt{0x603320}0x603320 666 0x1bb\texttt{0x1bb}0x1bb 0x603320\texttt{0x603320}0x603320 NULL\texttt{NULL}NULL For each transformed
number[i], ifnumber[i] <= 1, the head node is used directly; otherwise, a loop traverses the list to select thenumber[i]-th node. -
4011ab∼\sim∼4011d9The code rebuilds the linked list according to the order specified by the transformed
number[i]values.-
Register roles
-
%rbxAddress of the new head node (read fromnode_ptrs[0]on the stack) -
%rcxAddress of the current node being processed -
%rdxAddress of the next node (read from the pointer array on the stack) -
%raxPoints to the storage location of the next node pointer in the stack array
-
-
Instructions
-
mov %rbx,%rcxSet the current node to the head node -
mov (%rax),%rdxRead the address of the next node from the stack -
mov %rdx,0x8(%rcx)Make the current node point to the next node
-
-
-
4011da∼\sim∼4011f5cmp %eax,(%rbx)This ensures the final list is sorted in non‑increasing order by the integer values stored in the nodes.
The original values in the list are [0x14c,0xa8,0x39c,0x2b3,0x1dd,0x1bb][\texttt{0x14c},\texttt{0xa8},\texttt{0x39c},\texttt{0x2b3},\texttt{0x1dd},\texttt{0x1bb}][0x14c,0xa8,0x39c,0x2b3,0x1dd,0x1bb]. When sorted in descending order by value, the corresponding node IDs are [3,4,5,6,1,2][3,4,5,6,1,2][3,4,5,6,1,2]. This ID order represents the transformed input. Since the transformation is num[i] = 7 - original[i], we reverse it to obtain the original input 4,3,2,1,6,5.
secret_phase
assembly
00000000004015c4 <phase_defused>:
4015c4: 48 83 ec 78 sub $0x78,%rsp
4015c8: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
4015cf: 00 00
4015d1: 48 89 44 24 68 mov %rax,0x68(%rsp)
4015d6: 31 c0 xor %eax,%eax
4015d8: 83 3d 81 21 20 00 06 cmpl $0x6,0x202181(%rip) # 603760 <num_input_strings>
4015df: 75 5e jne 40163f <phase_defused+0x7b>
4015e1: 4c 8d 44 24 10 lea 0x10(%rsp),%r8
4015e6: 48 8d 4c 24 0c lea 0xc(%rsp),%rcx
4015eb: 48 8d 54 24 08 lea 0x8(%rsp),%rdx
4015f0: be 19 26 40 00 mov $0x402619,%esi
4015f5: bf 70 38 60 00 mov $0x603870,%edi
4015fa: e8 f1 f5 ff ff call 400bf0 <__isoc99_sscanf@plt>
4015ff: 83 f8 03 cmp $0x3,%eax
401602: 75 31 jne 401635 <phase_defused+0x71>
401604: be 22 26 40 00 mov $0x402622,%esi
401609: 48 8d 7c 24 10 lea 0x10(%rsp),%rdi
40160e: e8 25 fd ff ff call 401338 <strings_not_equal>
401613: 85 c0 test %eax,%eax
401615: 75 1e jne 401635 <phase_defused+0x71>
401617: bf f8 24 40 00 mov $0x4024f8,%edi
40161c: e8 ef f4 ff ff call 400b10 <puts@plt>
401621: bf 20 25 40 00 mov $0x402520,%edi
401626: e8 e5 f4 ff ff call 400b10 <puts@plt>
40162b: b8 00 00 00 00 mov $0x0,%eax
401630: e8 0d fc ff ff call 401242 <secret_phase>
401635: bf 58 25 40 00 mov $0x402558,%edi
40163a: e8 d1 f4 ff ff call 400b10 <puts@plt>
40163f: 48 8b 44 24 68 mov 0x68(%rsp),%rax
401644: 64 48 33 04 25 28 00 xor %fs:0x28,%rax
40164b: 00 00
40164d: 74 05 je 401654 <phase_defused+0x90>
40164f: e8 dc f4 ff ff call 400b30 <__stack_chk_fail@plt>
401654: 48 83 c4 78 add $0x78,%rsp
401658: c3 ret
401659: 90 nop
40165a: 90 nop
40165b: 90 nop
40165c: 90 nop
40165d: 90 nop
40165e: 90 nop
40165f: 90 nop
The existence of a secret_phase can be identified by examining the <phase_defused> function. When inspecting at address 0x402619 with (gdb) x/s 0x402619, the format string "%d %d %s" is revealed.
To investigate further, set a breakpoint at 0x4015fa using (gdb) b *0x4015fa. After running the bomb executable and providing the correct solution for the earlier phases, we can examine the content at address 0x603870 with (gdb) x/s 0x603870 (since the breakpoint is triggered during phase_4). This reveals that the "%d %d %s" format corresponds to the fourth phase, and we need to determine the correct string to enter along with the two integers.
The code segment lea 0x10(%rsp),%rdi loads the address of the user-supplied string (the third argument) into %rdi, while mov $0x402622,%esi loads the address of the expected ciphertext into %esi. By examining memory with (gdb) x/s 0x402622, we obtain the string DrEvil. This is the secret password needed to unlock the hidden phase.
Thus, to pass phase_4 and activate the secret_phase, we must append DrEvil as a third input after the two integer answers. One complete input sequence for the entire bomb could be:
Border relations with Canada have never been better.
1 2 4 8 16 32
0 207
0 0 DrEvil
ionefg
4 3 2 1 6 5
``
---
```assembly
0000000000401204 <fun7>:
401204: 48 83 ec 08 sub $0x8,%rsp
401208: 48 85 ff test %rdi,%rdi
40120b: 74 2b je 401238 <fun7+0x34>
40120d: 8b 17 mov (%rdi),%edx
40120f: 39 f2 cmp %esi,%edx
401211: 7e 0d jle 401220 <fun7+0x1c>
401213: 48 8b 7f 08 mov 0x8(%rdi),%rdi
401217: e8 e8 ff ff ff call 401204 <fun7>
40121c: 01 c0 add %eax,%eax
40121e: eb 1d jmp 40123d <fun7+0x39>
401220: b8 00 00 00 00 mov $0x0,%eax
401225: 39 f2 cmp %esi,%edx
401227: 74 14 je 40123d <fun7+0x39>
401229: 48 8b 7f 10 mov 0x10(%rdi),%rdi
40122d: e8 d2 ff ff ff call 401204 <fun7>
401232: 8d 44 00 01 lea 0x1(%rax,%rax,1),%eax
401236: eb 05 jmp 40123d <fun7+0x39>
401238: b8 ff ff ff ff mov $0xffffffff,%eax
40123d: 48 83 c4 08 add $0x8,%rsp
401241: c3 ret
0000000000401242 <secret_phase>:
401242: 53 push %rbx
401243: e8 56 02 00 00 call 40149e <read_line>
401248: ba 0a 00 00 00 mov $0xa,%edx
40124d: be 00 00 00 00 mov $0x0,%esi
401252: 48 89 c7 mov %rax,%rdi
401255: e8 76 f9 ff ff call 400bd0 <strtol@plt>
40125a: 48 89 c3 mov %rax,%rbx
40125d: 8d 40 ff lea -0x1(%rax),%eax
401260: 3d e8 03 00 00 cmp $0x3e8,%eax
401265: 76 05 jbe 40126c <secret_phase+0x2a>
401267: e8 ce 01 00 00 call 40143a <explode_bomb>
40126c: 89 de mov %ebx,%esi
40126e: bf f0 30 60 00 mov $0x6030f0,%edi
401273: e8 8c ff ff ff call 401204 <fun7>
401278: 83 f8 02 cmp $0x2,%eax
40127b: 74 05 je 401282 <secret_phase+0x40>
40127d: e8 b8 01 00 00 call 40143a <explode_bomb>
401282: bf 38 24 40 00 mov $0x402438,%edi
401287: e8 84 f8 ff ff call 400b10 <puts@plt>
40128c: e8 33 03 00 00 call 4015c4 <phase_defused>
401291: 5b pop %rbx
401292: c3 ret
401293: 90 nop
401294: 90 nop
401295: 90 nop
401296: 90 nop
401297: 90 nop
401298: 90 nop
401299: 90 nop
40129a: 90 nop
40129b: 90 nop
40129c: 90 nop
40129d: 90 nop
40129e: 90 nop
40129f: 90 nop
-
lea -0x1(%rax),%eax&cmp $0x3e8,%eaxThe range of the input number must be [1,1001][1,1001][1,1001].
-
mov %ebx,%esi&mov $0x6030f0,%edi&call 401204 <fun7>&cmp $0x2,%eaxThe condition for passing the secret phase is that the return value of
fun7(0x6030f0, input)must equal 2. -
<fun7>Using
(gdb) x/60x 0x6030f0to inspect memory, we obtain the following data:assembly0x6030f0 <n1>: 0x0000000000000024 0x0000000000603110 0x603100 <n1+16>: 0x0000000000603130 0x0000000000000000 0x603110 <n21>: 0x0000000000000008 0x0000000000603190 0x603120 <n21+16>: 0x0000000000603150 0x0000000000000000 0x603130 <n22>: 0x0000000000000032 0x0000000000603170 0x603140 <n22+16>: 0x00000000006031b0 0x0000000000000000 0x603150 <n32>: 0x0000000000000016 0x0000000000603270 0x603160 <n32+16>: 0x0000000000603230 0x0000000000000000 0x603170 <n33>: 0x000000000000002d 0x00000000006031d0 0x603180 <n33+16>: 0x0000000000603290 0x0000000000000000 0x603190 <n31>: 0x0000000000000006 0x00000000006031f0 0x6031a0 <n31+16>: 0x0000000000603250 0x0000000000000000 0x6031b0 <n34>: 0x000000000000006b 0x0000000000603210 0x6031c0 <n34+16>: 0x00000000006032b0 0x0000000000000000 0x6031d0 <n45>: 0x0000000000000028 0x0000000000000000 0x6031e0 <n45+16>: 0x0000000000000000 0x0000000000000000 0x6031f0 <n41>: 0x0000000000000001 0x0000000000000000 0x603200 <n41+16>: 0x0000000000000000 0x0000000000000000 0x603210 <n47>: 0x0000000000000063 0x0000000000000000 0x603220 <n47+16>: 0x0000000000000000 0x0000000000000000 0x603230 <n44>: 0x0000000000000023 0x0000000000000000 0x603240 <n44+16>: 0x0000000000000000 0x0000000000000000 0x603250 <n42>: 0x0000000000000007 0x0000000000000000 0x603260 <n42+16>: 0x0000000000000000 0x0000000000000000 0x603270 <n43>: 0x0000000000000014 0x0000000000000000 0x603280 <n43+16>: 0x0000000000000000 0x0000000000000000 0x603290 <n46>: 0x000000000000002f 0x0000000000000000 0x6032a0 <n46+16>: 0x0000000000000000 0x0000000000000000 0x6032b0 <n48>: 0x00000000000003e9 0x0000000000000000 0x6032c0 <n48+16>: 0x0000000000000000 0x0000000000000000A BST can be constructed at address
0x6030f0:36 (n1) / \ / \ 8 (n21) 50 (n22) / \ / \ / \ / \ 6 (n31) 22(n32) 45(n33) 107(n34) / \ / \ / \ / \ 1 7 20 35 40 47 99 1001 (n41)(n42)(n43)(n44)(n45)(n46)(n47)(n48)Translating the assembly logic of
fun7into C language:Cint func7 (T *u,int target) { if (u == NULL) return -1; if (&u <= target) { if (&u == target) return 0; else return 2 * func7 (p -> right,target) + 1; } else return 2 * func7 (p -> left,target); }The function encodes the search path as a binary number. To obtain a return value of 2, the recursive sequence must satisfy 2×(2×0+1)=22 \times (2 \times 0 + 1) = 22×(2×0+1)=2. This corresponds to the search path left → right → match: from root (36) go left to 8, then right to 22, where the value is found.
Thus, the input that satisfies
fun7(0x6030f0, input) == 2is22.
Final answer:
Border relations with Canada have never been better.
1 2 4 8 16 32
0 207
0 0 DrEvil
ionefg
4 3 2 1 6 5
22