一:主要的知识点
1、说明
本文只是教程内容的一小段,因博客字数限制,故进行拆分。主教程链接:vtk教程------逐行解析官网所有Python示例-CSDN博客
2、知识点纪要
本段代码主要涉及的有①平面着色与高洛德着色的区别
二:代码及注释
python
import vtkmodules.vtkRenderingOpenGL2
import vtkmodules.vtkInteractionStyle
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkIOGeometry import vtkOBJReader
from vtkmodules.vtkFiltersSources import vtkSphereSource, vtkCylinderSource
from collections import OrderedDict
from vtkmodules.vtkRenderingCore import vtkPolyDataMapper, vtkActor, vtkRenderer, vtkRenderWindow, \
vtkRenderWindowInteractor
from vtkmodules.vtkCommonDataModel import vtkQuadric
from vtkmodules.vtkImagingHybrid import vtkSampleFunction
from vtkmodules.vtkFiltersCore import vtkContourFilter
def CreateIsoSurface(flat):
quadric = vtkQuadric()
quadric.SetCoefficients(1, 2, 3, 0, 1, 0, 0, 0, 0, 0)
sample = vtkSampleFunction()
sample.SetSampleDimensions(25, 25, 25)
sample.SetImplicitFunction(quadric)
# Generate the implicit surface.
contour = vtkContourFilter()
contour.SetInputConnection(sample.GetOutputPort())
range = [1.0, 6.0]
contour.GenerateValues(5, range)
# Map the contour.
contourMapper = vtkPolyDataMapper()
contourMapper.SetInputConnection(contour.GetOutputPort())
contourMapper.SetScalarRange(0, 7)
actor = vtkActor()
actor.SetMapper(contourMapper)
if flat:
actor.GetProperty().SetInterpolationToFlat()
else:
actor.GetProperty().SetInterpolationToGouraud()
renderer = vtkRenderer()
renderer.AddActor(actor)
return renderer
def CreateModel(flat, fileName):
'''
:param flat: The interpolation to use (flat or Gouraud).
:param fileName: The file name.
:return: the renderer
'''
colors = vtkNamedColors()
reader = vtkOBJReader()
reader.SetFileName(fileName)
mapper = vtkPolyDataMapper()
mapper.SetInputConnection(reader.GetOutputPort())
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d('Tan'))
if flat:
actor.GetProperty().SetInterpolationToFlat()
else:
actor.GetProperty().SetInterpolationToGouraud()
renderer = vtkRenderer()
renderer.AddActor(actor)
return renderer
def CreateCylinder(flat):
colors = vtkNamedColors()
cylinder = vtkCylinderSource()
mapper = vtkPolyDataMapper()
mapper.SetInputConnection(cylinder.GetOutputPort())
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d('MistyRose'))
if flat:
actor.GetProperty().SetInterpolationToFlat()
else:
actor.GetProperty().SetInterpolationToGouraud()
renderer = vtkRenderer()
renderer.AddActor(actor)
return renderer
def CreateSphere(flat):
colors = vtkNamedColors()
sphere = vtkSphereSource()
mapper = vtkPolyDataMapper()
mapper.SetInputConnection(sphere.GetOutputPort())
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d('MistyRose'))
if flat:
actor.GetProperty().SetInterpolationToFlat()
else:
actor.GetProperty().SetInterpolationToGouraud()
renderer = vtkRenderer()
renderer.AddActor(actor)
return renderer
def main():
"""
平面着色 SetInterpolationToFlat
原理: 对多边形(三角形或四边形)的整个表面使用一个恒定的颜色和法向量计算亮度
视觉效果: 结果是棱角分明的。可以看到组成曲面的各个多边形的边界,常用于显示模型的实际拓扑结构或模拟低多边形艺术风格
高洛德着色 SetInterpolationToGouraud
原理: 在多边形的顶点处计算颜色和亮度,然后将这些颜色值在多边形内部进行线性插值
视觉效果: 结果是平滑且连续的。它极大地减少了多边形边缘的可见性,使低分辨率的曲面看起来更圆滑,更逼真
"""
colors = vtkNamedColors()
fileName = "Data/cow.obj"
renderers = OrderedDict()
renderers['flatSphereRenderer'] = CreateSphere(True)
renderers['flatCylinderRenderer'] = CreateCylinder(True)
renderers['flatIsoSurfaceRenderer'] = CreateIsoSurface(True)
renderers['flatModelRenderer'] = CreateModel(True, fileName)
renderers['smoothSphereRenderer'] = CreateSphere(False)
renderers['smoothCylinderRenderer'] = CreateCylinder(False)
renderers['smoothIsoSurfaceRenderer'] = CreateIsoSurface(False)
renderers['smoothModelRenderer'] = CreateModel(False, fileName)
keys = list(renderers.keys())
renderWindow = vtkRenderWindow()
# Setup the viewports for the renderers.
rendererSize = 256
xGridDimensions = 4
yGridDimensions = 2
renderWindow.SetSize(rendererSize * xGridDimensions, rendererSize * yGridDimensions)
renderWindow.SetWindowName('FlatVersusGouraud')
for row in range(0, yGridDimensions):
for col in range(0, xGridDimensions):
# (xmin, ymin, xmax, ymax)
viewport = [0] * 4
viewport[0] = col / xGridDimensions
viewport[1] = (yGridDimensions - (row + 1)) / yGridDimensions
viewport[2] = (col + 1) / xGridDimensions
viewport[3] = (yGridDimensions - row) / yGridDimensions
index = row * xGridDimensions + col
renderers[keys[index]].SetViewport(viewport)
for r in range(0, len(renderers)):
renderers[keys[r]].SetBackground(colors.GetColor3d('SlateGray'))
renderers[keys[r]].GetActiveCamera().Azimuth(20)
renderers[keys[r]].GetActiveCamera().Elevation(30)
renderers[keys[r]].ResetCamera()
if r > 3:
renderers[keys[r]].SetActiveCamera(renderers[keys[r - 4]].GetActiveCamera())
renderWindow.AddRenderer(renderers[keys[r]])
interactor = vtkRenderWindowInteractor()
interactor.SetRenderWindow(renderWindow)
renderWindow.Render()
interactor.Start()
if __name__ == '__main__':
main()