【用户行为归因分析项目】- 【企业级项目开发第三站】模拟DIM层设备、应用数据加载到Hive

gitee代码仓地址:DataWareHouse: UserBehaviorAttributionAnalysis​​​​​​

图方便两张维表就不建成分区表

企业中也应该是分区表,每天的行为数据关联每天组新的维表数据

第一次生成全量,有往里面继续增加设备和应用数据的功能

一、主方法

ProductionDimData 为应用起点

主方法调用的service:ProductDimData

Scala 复制代码
package com.dw.application

import com.dw.entity.{DimAppInfo, DimDeviceInfo}
import com.dw.service.ProductDimData

object ProductionDimData {
  //生产数据
  //五类数据需要生产,其中安装激活卸载数据是每日生产,应用信息和设备信息,在本次项目中设计为不更新


  def main(args: Array[String]): Unit = {

    //获取到dim数据(数组形式)之后加载到hive表中
    val dimData = new ProductDimData


    /**
     * 初始化设备信息和app信息,并加载到hive中
     */
   def initializeDimData(): Unit = {
      val appInfo: Array[DimAppInfo] = dimData.mockAppData()
      val deviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(100)
      println(appInfo.mkString(";\n"))
      println(deviceInfo.mkString(";\n"))
      dimData.loadAppData(appInfo)
      dimData.loadDeviceData(deviceInfo)
    }

    /**
     * 增量添化设备信息并加载到hive中
     */
    def addDeviceData(): Unit = {
      //增加用户
      val addDeviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(5)
      dimData.loadDeviceData(addDeviceInfo,"into")
    }

    /**
     * 增量添化应用信息并加载到hive中
     */
    def addAppData(): Unit = {
      //增加用户
      val addDeviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(5)
      dimData.loadDeviceData(addDeviceInfo,"into")
    }

    initializeDimData()
    //addDeviceData()
  }
}

二、逻辑处理 ProductDimData

四个方法

mockDeviceData:模拟设备数据

mockAppData:模拟应用数据

loadAppData:将应用数据加载到hive表

loadDeviceData:将设备数据加载到hive表

Scala 复制代码
package com.dw.service

import com.dw.common.utils.ConfigUtil
import com.dw.config.DeviceAndAppInfoConfig.{appInfos, device_models}
import com.dw.dao.HiveSqlExecute
import com.dw.entity.{DimAppInfo, DimDeviceInfo}
import com.dw.util.RadomUtils

import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
import scala.collection.mutable.ArrayBuffer
import scala.util.Random

class ProductDimData {
  private val radomDeviceId = new RadomUtils
  private val dimHiveTableName = ConfigUtil.getHiveTableName.getConfig("dim")

  private val hiveSqlExecute = new HiveSqlExecute

  /**
   * 模拟生成设备信息
   * 据提前定制的DeviceAndAppInfoConfig配置类中的设备数据,生成设备id
   *
   * @param count 生成的数据条数
   * @return Array[DimDeviceInfo]
   */
  def mockDeviceData(count: Int): Array[DimDeviceInfo] = {
    //val deviceData:ArrayBuffer[DimDeviceInfo]=ArrayBuffer.empty
    val deviceData: ArrayBuffer[DimDeviceInfo] = ArrayBuffer()

    (1 to count).foreach(_ => {
      val device_model = device_models(Random.nextInt(device_models.length)).mkString(",")
      deviceData += DimDeviceInfo(
        radomDeviceId.RadomDeviceId(16),
        device_model.split(",")(0).mkString,
        device_model.split(",")(1).mkString,
        device_model.split(",")(2).mkString.toDouble
      )
    }
    )
    deviceData.toArray
  }

  /**
   * 模拟生成设备信息
   * 根据提前定制的DeviceAndAppInfoConfig配置类中的app数据,生成应用id
   *
   * @return Array[DimAppInfo]
   */
  def mockAppData(): Array[DimAppInfo] = {
    val dimAppInfo = ArrayBuffer[DimAppInfo]()
    appInfos.foreach(
      appinfo => {
        dimAppInfo += DimAppInfo(
          ("c" + Random.nextInt(99999) + 1).toString
          , appinfo(0)
          , appinfo(1)
        )
      }
    )
    dimAppInfo.toArray
  }


  /**
   * app数据加载到hive表中
   *
   * @param appInfo  生成的app相关数据
   * @param loadType 可选insert into还是insert overwrite(默认)
   * @return Array[DimAppInfo]
   */
  def loadAppData(appInfo: Array[DimAppInfo], loadType: String = "overwrite"): Unit = {

    val ValueSql = appInfo.map(appinfo => {
      s"('${appinfo.app_id}', '${appinfo.app_name}','${appinfo.app_category}','${LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))}')"
    }).mkString(",")

    val TABLE_NAME = dimHiveTableName.getString("dim_app_info")

    if (loadType.toLowerCase == "into")
      hiveSqlExecute.batchInsert(TABLE_NAME, ValueSql)
    else
      hiveSqlExecute.batchInsertOverWrite(TABLE_NAME, ValueSql)
  }

  /**
   * 设备数据加载到hive表中
   *
   * @param deviceInfo 生成的设备相关数据
   * @param loadType   可选insert into还是insert overwrite(默认)
   * @return Array[DimAppInfo]
   */
  def loadDeviceData(deviceInfo: Array[DimDeviceInfo], loadType: String = "overwrite"): Unit = {
    val ValueSql = deviceInfo.map(deviceinfo => {
      s"('${deviceinfo.device_id}', '${deviceinfo.device_model}','${deviceinfo.device_brand}','${deviceinfo.device_price}','${LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))}')"
    }).mkString(",")

    val TABLE_NAME = dimHiveTableName.getString("dim_device_info")
    if (loadType.toLowerCase == "into")
      hiveSqlExecute.batchInsert(TABLE_NAME, ValueSql)
    else
      hiveSqlExecute.batchInsertOverWrite(TABLE_NAME, ValueSql)
  }


}

三、app和设备的原始数据配置

DeviceAndAppInfoConfig

用来配置app和设备的相关无法自动生成的信息si

Scala 复制代码
package com.dw.config

object DeviceAndAppInfoConfig {

  val device_models = Array(
    Array("XIAOMI 17", "XIAOMI", 4799.0),
    Array("XIAOMI 17 Pro", "XIAOMI", 4999.0),
    Array("XIAOMI 17 ProMax", "XIAOMI", 5999.0),

    Array("Mate 80", "HUAWEI", 4699.0),
    Array("Mate 80 Pro", "HUAWEI", 5999.0),
    Array("Mate 80 ProMax", "HUAWEI", 7999.0),

    Array("iPhone 17", "HUAWEI", 5999.0),
    Array("iPhone 17 Pro", "HUAWEI", 8999.0),
    Array("iPhone 17 ProMax", "HUAWEI", 9999.0)
  )
  val appInfos = Array(
    Array("网易云", "音乐"), Array("QQ音乐", "音乐"), Array("汽水音乐", "音乐"),
    Array("QQ", "社交"), Array("微信", "社交"), Array("微博", "社交"),
    Array("腾讯视频", "视频"), Array("爱奇艺", "视频"), Array("优酷", "视频"),
    Array("招商银行", "理财"), Array("建设银行", "理财"), Array("兴业银行", "理财"),
    Array("高德地图", "地图导航"), Array("百度地图", "地图导航"), Array("Google地图", "地图导航"),
    Array("抖音", "短视频"), Array("快手", "短视频"), Array("内涵段子", "短视频"),
    Array("墨迹天气", "天气"), Array("中国气象", "天气"), Array("彩云天气", "天气"),
    Array("豆包", "AI"), Array("Deep Seek", "AI"), Array("千问", "AI"),
  )
}

四、功能验证

功能的验证我们在下一章模拟生成用户行为信息后统一展示

相关推荐
麦聪聊数据2 小时前
解构“逻辑数据仓库 (LDW)”与数据虚拟化
数据库·数据仓库·sql
小鸡脚来咯4 小时前
Hive SQL与SQL不同处
hive·hadoop·sql
kylezhao20194 小时前
WinForm/WPF界面开发(常用控件、布局设计、事件处理)
大数据·hadoop·wpf
郑泰科技6 小时前
hbase 避坑F:\hbase\hadoop\sbin>start-dfs.cmd 系统找不到文件 hadoop。
大数据·数据库·hadoop·hdfs·hbase
郑泰科技6 小时前
hbase避坑:Hadoop 的 NameNode 找不到指定的存储目录
数据库·hadoop·hbase
zgl_2005377920 小时前
ZGLanguage 解析SQL数据血缘 之 提取select语句中的源表名
大数据·数据库·c++·数据仓库·sql·数据库开发·etl
宸津-代码粉碎机1 天前
Spring 6.0+Boot 3.0实战避坑全指南:5大类高频问题与解决方案(附代码示例)
java·数据仓库·hive·hadoop·python·技术文档编写
`林中水滴`1 天前
Hive系列:Hive 默认分隔符
hive
昌sit!1 天前
hadoop集群搭建
大数据·hadoop·分布式