【用户行为归因分析项目】- 【企业级项目开发第三站】模拟DIM层设备、应用数据加载到Hive

gitee代码仓地址:DataWareHouse: UserBehaviorAttributionAnalysis​​​​​​

图方便两张维表就不建成分区表

企业中也应该是分区表,每天的行为数据关联每天组新的维表数据

第一次生成全量,有往里面继续增加设备和应用数据的功能

一、主方法

ProductionDimData 为应用起点

主方法调用的service:ProductDimData

Scala 复制代码
package com.dw.application

import com.dw.entity.{DimAppInfo, DimDeviceInfo}
import com.dw.service.ProductDimData

object ProductionDimData {
  //生产数据
  //五类数据需要生产,其中安装激活卸载数据是每日生产,应用信息和设备信息,在本次项目中设计为不更新


  def main(args: Array[String]): Unit = {

    //获取到dim数据(数组形式)之后加载到hive表中
    val dimData = new ProductDimData


    /**
     * 初始化设备信息和app信息,并加载到hive中
     */
   def initializeDimData(): Unit = {
      val appInfo: Array[DimAppInfo] = dimData.mockAppData()
      val deviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(100)
      println(appInfo.mkString(";\n"))
      println(deviceInfo.mkString(";\n"))
      dimData.loadAppData(appInfo)
      dimData.loadDeviceData(deviceInfo)
    }

    /**
     * 增量添化设备信息并加载到hive中
     */
    def addDeviceData(): Unit = {
      //增加用户
      val addDeviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(5)
      dimData.loadDeviceData(addDeviceInfo,"into")
    }

    /**
     * 增量添化应用信息并加载到hive中
     */
    def addAppData(): Unit = {
      //增加用户
      val addDeviceInfo: Array[DimDeviceInfo] = dimData.mockDeviceData(5)
      dimData.loadDeviceData(addDeviceInfo,"into")
    }

    initializeDimData()
    //addDeviceData()
  }
}

二、逻辑处理 ProductDimData

四个方法

mockDeviceData:模拟设备数据

mockAppData:模拟应用数据

loadAppData:将应用数据加载到hive表

loadDeviceData:将设备数据加载到hive表

Scala 复制代码
package com.dw.service

import com.dw.common.utils.ConfigUtil
import com.dw.config.DeviceAndAppInfoConfig.{appInfos, device_models}
import com.dw.dao.HiveSqlExecute
import com.dw.entity.{DimAppInfo, DimDeviceInfo}
import com.dw.util.RadomUtils

import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
import scala.collection.mutable.ArrayBuffer
import scala.util.Random

class ProductDimData {
  private val radomDeviceId = new RadomUtils
  private val dimHiveTableName = ConfigUtil.getHiveTableName.getConfig("dim")

  private val hiveSqlExecute = new HiveSqlExecute

  /**
   * 模拟生成设备信息
   * 据提前定制的DeviceAndAppInfoConfig配置类中的设备数据,生成设备id
   *
   * @param count 生成的数据条数
   * @return Array[DimDeviceInfo]
   */
  def mockDeviceData(count: Int): Array[DimDeviceInfo] = {
    //val deviceData:ArrayBuffer[DimDeviceInfo]=ArrayBuffer.empty
    val deviceData: ArrayBuffer[DimDeviceInfo] = ArrayBuffer()

    (1 to count).foreach(_ => {
      val device_model = device_models(Random.nextInt(device_models.length)).mkString(",")
      deviceData += DimDeviceInfo(
        radomDeviceId.RadomDeviceId(16),
        device_model.split(",")(0).mkString,
        device_model.split(",")(1).mkString,
        device_model.split(",")(2).mkString.toDouble
      )
    }
    )
    deviceData.toArray
  }

  /**
   * 模拟生成设备信息
   * 根据提前定制的DeviceAndAppInfoConfig配置类中的app数据,生成应用id
   *
   * @return Array[DimAppInfo]
   */
  def mockAppData(): Array[DimAppInfo] = {
    val dimAppInfo = ArrayBuffer[DimAppInfo]()
    appInfos.foreach(
      appinfo => {
        dimAppInfo += DimAppInfo(
          ("c" + Random.nextInt(99999) + 1).toString
          , appinfo(0)
          , appinfo(1)
        )
      }
    )
    dimAppInfo.toArray
  }


  /**
   * app数据加载到hive表中
   *
   * @param appInfo  生成的app相关数据
   * @param loadType 可选insert into还是insert overwrite(默认)
   * @return Array[DimAppInfo]
   */
  def loadAppData(appInfo: Array[DimAppInfo], loadType: String = "overwrite"): Unit = {

    val ValueSql = appInfo.map(appinfo => {
      s"('${appinfo.app_id}', '${appinfo.app_name}','${appinfo.app_category}','${LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))}')"
    }).mkString(",")

    val TABLE_NAME = dimHiveTableName.getString("dim_app_info")

    if (loadType.toLowerCase == "into")
      hiveSqlExecute.batchInsert(TABLE_NAME, ValueSql)
    else
      hiveSqlExecute.batchInsertOverWrite(TABLE_NAME, ValueSql)
  }

  /**
   * 设备数据加载到hive表中
   *
   * @param deviceInfo 生成的设备相关数据
   * @param loadType   可选insert into还是insert overwrite(默认)
   * @return Array[DimAppInfo]
   */
  def loadDeviceData(deviceInfo: Array[DimDeviceInfo], loadType: String = "overwrite"): Unit = {
    val ValueSql = deviceInfo.map(deviceinfo => {
      s"('${deviceinfo.device_id}', '${deviceinfo.device_model}','${deviceinfo.device_brand}','${deviceinfo.device_price}','${LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))}')"
    }).mkString(",")

    val TABLE_NAME = dimHiveTableName.getString("dim_device_info")
    if (loadType.toLowerCase == "into")
      hiveSqlExecute.batchInsert(TABLE_NAME, ValueSql)
    else
      hiveSqlExecute.batchInsertOverWrite(TABLE_NAME, ValueSql)
  }


}

三、app和设备的原始数据配置

DeviceAndAppInfoConfig

用来配置app和设备的相关无法自动生成的信息si

Scala 复制代码
package com.dw.config

object DeviceAndAppInfoConfig {

  val device_models = Array(
    Array("XIAOMI 17", "XIAOMI", 4799.0),
    Array("XIAOMI 17 Pro", "XIAOMI", 4999.0),
    Array("XIAOMI 17 ProMax", "XIAOMI", 5999.0),

    Array("Mate 80", "HUAWEI", 4699.0),
    Array("Mate 80 Pro", "HUAWEI", 5999.0),
    Array("Mate 80 ProMax", "HUAWEI", 7999.0),

    Array("iPhone 17", "HUAWEI", 5999.0),
    Array("iPhone 17 Pro", "HUAWEI", 8999.0),
    Array("iPhone 17 ProMax", "HUAWEI", 9999.0)
  )
  val appInfos = Array(
    Array("网易云", "音乐"), Array("QQ音乐", "音乐"), Array("汽水音乐", "音乐"),
    Array("QQ", "社交"), Array("微信", "社交"), Array("微博", "社交"),
    Array("腾讯视频", "视频"), Array("爱奇艺", "视频"), Array("优酷", "视频"),
    Array("招商银行", "理财"), Array("建设银行", "理财"), Array("兴业银行", "理财"),
    Array("高德地图", "地图导航"), Array("百度地图", "地图导航"), Array("Google地图", "地图导航"),
    Array("抖音", "短视频"), Array("快手", "短视频"), Array("内涵段子", "短视频"),
    Array("墨迹天气", "天气"), Array("中国气象", "天气"), Array("彩云天气", "天气"),
    Array("豆包", "AI"), Array("Deep Seek", "AI"), Array("千问", "AI"),
  )
}

四、功能验证

功能的验证我们在下一章模拟生成用户行为信息后统一展示

相关推荐
yumgpkpm18 小时前
银行智能数据平台在Cloudera CDH6\CDP 7\CMP 7平台下的具体使用配置流程
大数据·hive·hadoop·数据挖掘·flink·spark·cloudera
Francek Chen1 天前
【大数据基础】大数据处理架构Hadoop:02 Hadoop生态系统
大数据·hadoop·分布式·hdfs·架构
zhixingheyi_tian2 天前
Hadoop 之 行业生态
hadoop
徐先生 @_@|||2 天前
大数据技术演进(从传统Hadoop到Spark到云原生的技术演进路径)
大数据·hadoop·spark
查士丁尼·绵2 天前
hadoop集群存算分离
hive·hdfs·zookeeper·spark·hbase·yarn·galera
weixin_457297103 天前
Hadoop面试题
大数据·hadoop·分布式
何亚告3 天前
记一次项目上hadoop数据迁移
大数据·hadoop·分布式
默默在路上3 天前
apache-hive-3.1.3 show databases;报错
hive·hadoop·apache
talle20213 天前
Hadoop分布式计算框架【MapReduce】
大数据·hadoop·mapreduce
QQ12958455043 天前
SSAS - 步骤一:通过VS2022新建项目
数据仓库·数据分析