数据集标签文件转换方法:
数据标注软件labelimg,标注VOC格式数据后缀为xml,YOLO格式为txt文件。
image_split_to_txt.py文件, 用于将 XML 文件类型转化为 TXT 文件类型并将对应的图片和 XML 文件移动到训练、验证、测试集的目录中.
注意:
-
每次重新生成时,需要将原文件删掉,否则不更新。
-
代码里classes,改成自己的类型。
-
每次重新生成时,原始的数据集要重新复制,因为每次转换后,原文件夹中用到的图片移出了。
python
"""
将xml标签文件转换为txt文件。注意:代码中类别标签一定要修改
"""
# 1.导入相应的库
import os
import random
import argparse
import shutil
import xml.etree.ElementTree as ET
from tqdm import tqdm
# 参数解析
parser = argparse.ArgumentParser()
parser.add_argument('--xml_path', default='../data/dataset', type=str, help='input xml label path')
parser.add_argument('--images_path', default='../data/images', type=str, help='original images path')
parser.add_argument('--output_path', default='../data', type=str, help='output base path')
opt = parser.parse_args()
# 定义划分比例
trainval_percent = 1.0
train_percent = 0.8
val_percent = 0.2
# 设置路径
xml_path = opt.xml_path
images_path = opt.images_path
output_path = opt.output_path
# 创建输出目录结构
os.makedirs(os.path.join(output_path, 'images/train'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'images/val'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'images/test'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'labels/train'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'labels/val'), exist_ok=True)
os.makedirs(os.path.join(output_path, 'labels/test'), exist_ok=True)
# 获取所有XML文件
xml_files = [f for f in os.listdir(xml_path) if f.endswith('.xml')]
random.shuffle(xml_files)
num = len(xml_files)
# 划分数据集
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
ta = tv - tr # 确保train+val=trainval
trainval = xml_files[:tv]
train = trainval[:tr]
val = trainval[tr:tr + ta]
test = xml_files[tv:]
# 类别定义
classes = ["panda","no_panda"]
# XML转换函数
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(xml_file, output_dir):
try:
image_id = os.path.splitext(xml_file)[0]
in_file = os.path.join(xml_path, xml_file)
out_file = os.path.join(output_dir, f'{image_id}.txt')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
with open(out_file, 'w', encoding='utf-8') as f_out:
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
f_out.write(f"{cls_id} {' '.join(str(a) for a in bb)}\n")
return image_id
except Exception as e:
print(f"Error processing {xml_file}: {str(e)}")
return None
# 处理训练集
print("Processing training set...")
train_list = []
for xml_file in tqdm(train):
image_id = convert_annotation(xml_file, os.path.join(output_path, 'labels/train'))
if image_id:
src_img = os.path.join(images_path, f'{image_id}.jpg')
dst_img = os.path.join(output_path, 'images/train', f'{image_id}.jpg')
if os.path.exists(src_img):
# 移动图片文件到训练集目录
shutil.move(src_img, dst_img)
train_list.append(dst_img)
# 移动XML文件到标签目录
src_xml = os.path.join(xml_path, xml_file)
dst_xml = os.path.join(output_path, 'labels/train', f'{image_id}.xml')
if os.path.exists(src_xml):
shutil.move(src_xml, dst_xml)
# 处理验证集
print("Processing validation set...")
val_list = []
for xml_file in tqdm(val):
image_id = convert_annotation(xml_file, os.path.join(output_path, 'labels/val'))
if image_id:
src_img = os.path.join(images_path, f'{image_id}.jpg')
dst_img = os.path.join(output_path, 'images/val', f'{image_id}.jpg')
if os.path.exists(src_img):
# 移动图片文件到验证集目录
shutil.move(src_img, dst_img)
val_list.append(dst_img)
# 移动XML文件到标签目录
src_xml = os.path.join(xml_path, xml_file)
dst_xml = os.path.join(output_path, 'labels/val', f'{image_id}.xml')
if os.path.exists(src_xml):
shutil.move(src_xml, dst_xml)
# 处理测试集
print("Processing test set...")
test_list = []
for xml_file in tqdm(test):
image_id = convert_annotation(xml_file, os.path.join(output_path, 'labels/test'))
if image_id:
src_img = os.path.join(images_path, f'{image_id}.jpg')
dst_img = os.path.join(output_path, 'images/test', f'{image_id}.jpg')
if os.path.exists(src_img):
# 移动图片文件到测试集目录
shutil.move(src_img, dst_img)
test_list.append(dst_img)
# 移动XML文件到标签目录
src_xml = os.path.join(xml_path, xml_file)
dst_xml = os.path.join(output_path, 'labels/test', f'{image_id}.xml')
if os.path.exists(src_xml):
shutil.move(src_xml, dst_xml)
# 保存路径文件
def save_path_file(file_path, path_list):
with open(file_path, 'w') as f:
for path in path_list:
f.write(f"{path}\n")
save_path_file(os.path.join(output_path, 'train.txt'), train_list)
save_path_file(os.path.join(output_path, 'val.txt'), val_list)
save_path_file(os.path.join(output_path, 'test.txt'), test_list)
print("Dataset preparation completed!")
print(f"Train: {len(train_list)} images, Val: {len(val_list)} images, Test: {len(test_list)} images")