rnn词嵌入层

RNN词嵌入层的作用

词嵌入层(Embedding Layer)在RNN中负责将离散的单词符号映射为连续的向量表示,将高维稀疏的one-hot编码转换为低维稠密的向量。这种表示能捕捉单词的语义和语法特征,提升模型对文本的理解能力。

词嵌入层的实现方式

Keras/PyTorch中的嵌入层

通过框架提供的Embedding类实现,需指定词汇表大小(vocab_size)、嵌入维度(embedding_dim)和输入长度(input_length)。

python 复制代码
# Keras示例
from tensorflow.keras.layers import Embedding

embedding_layer = Embedding(
    input_dim=vocab_size,  # 词汇表大小
    output_dim=embedding_dim,  # 嵌入维度(如100、300)
    input_length=max_seq_len  # 输入序列长度
)
python 复制代码
# PyTorch示例
import torch.nn as nn

embedding_layer = nn.Embedding(
    num_embeddings=vocab_size,  # 词汇表大小
    embedding_dim=embedding_dim  # 嵌入维度
)

预训练词嵌入的使用

预训练词向量(如Word2Vec、GloVe)可直接加载到嵌入层,提升模型效果:

python 复制代码
# 加载GloVe词向量到Keras嵌入层
embedding_matrix = np.zeros((vocab_size, embedding_dim))
for word, i in word_index.items():
    if word in glove_model:
        embedding_matrix[i] = glove_model[word]

embedding_layer = Embedding(
    input_dim=vocab_size,
    output_dim=embedding_dim,
    weights=[embedding_matrix],
    trainable=False  # 是否微调
)

词嵌入层的训练

  • 随机初始化:嵌入层通常随模型一起训练,初始值为随机分布(如正态分布)。
  • 微调预训练向量 :设置trainable=True可在训练中调整预训练词向量的权重。

注意事项

  • 词汇表覆盖 :确保生僻词或未登录词(OOV)有合理的处理方式(如<UNK>标记)。
  • 维度选择:嵌入维度通常为50-300,需权衡计算成本与语义表达能力。
  • 序列填充:输入序列需统一长度,过短填充、过长截断。

与RNN的结合

词嵌入层的输出作为RNN的输入,形状为(batch_size, sequence_length, embedding_dim),供后续LSTM/GRU层处理时序依赖。

python 复制代码
# Keras示例
model = Sequential([
    Embedding(vocab_size, embedding_dim, input_length=max_seq_len),
    LSTM(units=64),
    Dense(1, activation='sigmoid')
])
相关推荐
池央1 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
爱打代码的小林2 天前
循环网络RNN--评论内容情感分析
人工智能·rnn·深度学习
Network_Engineer3 天前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
海天一色y4 天前
使用 PyTorch RNN 识别手写数字
人工智能·pytorch·rnn
一招定胜负4 天前
从RNN到LSTM:循环神经网络的进化之路
人工智能·rnn·深度学习
Mr.huang5 天前
RNN系列模型演进及其解决的问题
人工智能·rnn·lstm
翱翔的苍鹰5 天前
法律问答机器人”技术方案”的实现
人工智能·rnn·深度学习·自然语言处理
All The Way North-6 天前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
Jiede16 天前
LSTM详细介绍(基于股票收盘价预测场景)
人工智能·rnn·lstm
FPGA小c鸡8 天前
【FPGA深度学习加速】RNN与LSTM硬件加速完全指南:从算法原理到硬件实现
rnn·深度学习·fpga开发