目录
1.程序功能描述
FSA-LSTM算法是将火烈鸟搜索算法与长短期记忆网络(Long Short-Term Memory, LSTM)相结合的时间序列预测模型,核心是利用FSA优化LSTM的隐藏层神经元数量,解决LSTM超参数凭经验设定导致的预测精度不足问题,适用于一维连续时间序列的回归预测。
2.测试软件版本以及运行结果展示
MATLAB2022A/MATLAB2024B版本运行



3.部分程序
.......................................................
% 将优化得到的最佳参数转换为整数,作为LSTM隐藏层神经元数量
% 加1是为了确保至少有1个神经元
NN=floor(Position)+1
% 定义LSTM神经网络结构
layers = [ ...
]; % 回归层,用于回归任务(输出连续值)
% 设置网络训练参数
options = trainingOptions('adam', ... % 使用Adam优化器,适合深度学习训练
'MaxEpochs', 240, ... % 最大训练轮数为240
'GradientThreshold', 1, ... % 梯度阈值为1,防止梯度爆炸
'InitialLearnRate', 0.004, ... % 初始学习率为0.004
'LearnRateSchedule', 'piecewise', ...% 学习率调度方式为分段衰减
'LearnRateDropPeriod', 60, ... % 每60轮衰减一次学习率
'LearnRateDropFactor',0.2, ... % 学习率衰减因子为0.2(变为原来的20%)
'L2Regularization', 0.01, ... % L2正则化系数为0.01,防止过拟合
'ExecutionEnvironment', 'gpu',... % 使用GPU加速训练(需配置GPU支持)
'Verbose', 0, ... % 不显示训练过程细节
'Plots', 'training-progress'); % 显示训练进度图表(损失变化等)
% 训练LSTM网络
net,INFO\] = trainNetwork(Pxtrain, Txtrain, layers, options); % 使用训练好的网络进行预测 Dat_yc1 = predict(net, Pxtrain); % 对训练数据进行预测(归一化尺度) Dat_yc2 = predict(net, Pxtest); % 对测试数据进行预测(归一化尺度) % 将预测结果反归一化,恢复到原始数据范围 Datn_yc1 = mapminmax('reverse', Dat_yc1, Norm_O); Datn_yc2 = mapminmax('reverse', Dat_yc2, Norm_O); % 将细胞数组转换为矩阵(方便后续处理和分析) Datn_yc1 = cell2mat(Datn_yc1); Datn_yc2 = cell2mat(Datn_yc2); % 保存训练信息、预测结果和收敛曲线到MAT文件,便于后续分析 save R2.mat INFO Datn_yc1 Datn_yc2 T_train T_test Convergence_curve 134
4.算法理论概述
FSA-LSTM将火烈鸟搜索算法的全局寻优能力与LSTM的时序特征捕捉能力结合:以FSA在指定范围内搜索最优LSTM隐藏层神经元数量(替代手动调参),再将最优参数代入LSTM训练,实现一维时间序列(如温度、负荷)的精准预测。FSA模拟火烈鸟迁徙、觅食行为平衡 "定向搜索" 与 "随机探索",避免局部最优;LSTM通过门控机制捕捉时序依赖,适配时间序列预测需求。
FSA-LSTM模拟火烈鸟行为更新种群,找到最优神经元数:

其中:
迁徙行为(第一 / 二阶段):模拟火烈鸟向最优栖息地(最优解)移动,通过(Xb(i)-X(j,i))*w让个体向当前最优位置靠近,保证寻优的方向性;
觅食行为:引入随机扰动(G、eps),增加种群多样性,避免算法陷入局部最优;
边界处理:防止优化参数超出预设的[5,40]范围,保证LSTM神经元数量有效;
5.完整程序
VVV
关注后手机上输入程序码:137