Day56 PythonStudy

@浙大疏锦行

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 数据预处理(与原代码一致)
train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
python 复制代码
import torch
import torch.nn as nn

# 定义通道注意力
class ChannelAttention(nn.Module):
    def __init__(self, in_channels, ratio=16):
        """
        通道注意力机制初始化
        参数:
            in_channels: 输入特征图的通道数
            ratio: 降维比例,用于减少参数量,默认为16
        """
        super().__init__()
        # 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        # 共享全连接层,用于学习通道间的关系
        # 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
        self.fc = nn.Sequential(
            nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层
            nn.ReLU(),  # 非线性激活函数
            nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层
        )
        # Sigmoid函数将输出映射到0-1之间,作为各通道的权重
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        """
        前向传播函数
        参数:
            x: 输入特征图,形状为 [batch_size, channels, height, width]
        返回:
            调整后的特征图,通道权重已应用
        """
        # 获取输入特征图的维度信息,这是一种元组的解包写法
        b, c, h, w = x.shape
        # 对平均池化结果进行处理:展平后通过全连接网络
        avg_out = self.fc(self.avg_pool(x).view(b, c))
        # 对最大池化结果进行处理:展平后通过全连接网络
        max_out = self.fc(self.max_pool(x).view(b, c))
        # 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
        attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
        # 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
        return x * attention #这个运算是pytorch的广播机制
## 空间注意力模块
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # 通道维度池化
        avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)
        max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)
        pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)
        attention = self.conv(pool_out)  # 卷积提取空间特征
        return x * self.sigmoid(attention)  # 特征与空间权重相乘
## CBAM模块
class CBAM(nn.Module):
    def __init__(self, in_channels, ratio=16, kernel_size=7):
        super().__init__()
        self.channel_attn = ChannelAttention(in_channels, ratio)
        self.spatial_attn = SpatialAttention(kernel_size)

    def forward(self, x):
        x = self.channel_attn(x)
        x = self.spatial_attn(x)
        return x
python 复制代码
# 定义带有CBAM的CNN模型
class CBAM_CNN(nn.Module):
    def __init__(self):
        super(CBAM_CNN, self).__init__()
        
        # ---------------------- 第一个卷积块(带CBAM) ----------------------
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(32) # 批归一化
        self.relu1 = nn.ReLU()
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.cbam1 = CBAM(in_channels=32)  # 在第一个卷积块后添加CBAM
        
        # ---------------------- 第二个卷积块(带CBAM) ----------------------
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.cbam2 = CBAM(in_channels=64)  # 在第二个卷积块后添加CBAM
        
        # ---------------------- 第三个卷积块(带CBAM) ----------------------
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.relu3 = nn.ReLU()
        self.pool3 = nn.MaxPool2d(kernel_size=2)
        self.cbam3 = CBAM(in_channels=128)  # 在第三个卷积块后添加CBAM
        
        # ---------------------- 全连接层 ----------------------
        self.fc1 = nn.Linear(128 * 4 * 4, 512)
        self.dropout = nn.Dropout(p=0.5)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        # 第一个卷积块
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.pool1(x)
        x = self.cbam1(x)  # 应用CBAM
        
        # 第二个卷积块
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.pool2(x)
        x = self.cbam2(x)  # 应用CBAM
        
        # 第三个卷积块
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.pool3(x)
        x = self.cbam3(x)  # 应用CBAM
        
        # 全连接层
        x = x.view(-1, 128 * 4 * 4)
        x = self.fc1(x)
        x = self.relu3(x)
        x = self.dropout(x)
        x = self.fc2(x)
        
        return x

# 初始化模型并移至设备
model = CBAM_CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
# 统计参数的核心函数
def count_parameters(model):
    """
    统计模型的参数数量
    返回:可训练参数数量,总参数数量
    """
    # 可训练参数(requires_grad=True)
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    # 总参数(包括冻结的参数)
    total_params = sum(p.numel() for p in model.parameters())
    
    return trainable_params, total_params

# 调用函数并输出结果
trainable_params, total_params = count_parameters(model)

# 格式化输出,让数字更易读
print(f"可训练参数数量: {trainable_params:,}")
print(f"总参数数量: {total_params:,}")

# 额外:打印每层的参数详情(可选)
print("\n各层参数详情:")
for name, param in model.named_parameters():
    print(f"{name}: {param.numel():,} 个参数 (可训练: {param.requires_grad})")

可训练参数数量: 1,150,896

总参数数量: 1,150,896

各层参数详情:

conv1.weight: 864 个参数 (可训练: True)

conv1.bias: 32 个参数 (可训练: True)

bn1.weight: 32 个参数 (可训练: True)

bn1.bias: 32 个参数 (可训练: True)

cbam1.channel_attn.fc.0.weight: 64 个参数 (可训练: True)

cbam1.channel_attn.fc.2.weight: 64 个参数 (可训练: True)

cbam1.spatial_attn.conv.weight: 98 个参数 (可训练: True)

conv2.weight: 18,432 个参数 (可训练: True)

conv2.bias: 64 个参数 (可训练: True)

bn2.weight: 64 个参数 (可训练: True)

bn2.bias: 64 个参数 (可训练: True)

cbam2.channel_attn.fc.0.weight: 256 个参数 (可训练: True)

cbam2.channel_attn.fc.2.weight: 256 个参数 (可训练: True)

cbam2.spatial_attn.conv.weight: 98 个参数 (可训练: True)

conv3.weight: 73,728 个参数 (可训练: True)

conv3.bias: 128 个参数 (可训练: True)

bn3.weight: 128 个参数 (可训练: True)

bn3.bias: 128 个参数 (可训练: True)

cbam3.channel_attn.fc.0.weight: 1,024 个参数 (可训练: True)

cbam3.channel_attn.fc.2.weight: 1,024 个参数 (可训练: True)

cbam3.spatial_attn.conv.weight: 98 个参数 (可训练: True)

fc1.weight: 1,048,576 个参数 (可训练: True)

fc1.bias: 512 个参数 (可训练: True)

fc2.weight: 5,120 个参数 (可训练: True)

fc2.bias: 10 个参数 (可训练: True)

相关推荐
人工智能培训1 小时前
具身智能如何让智能体理解物理定律?
人工智能·多模态学习·具身智能·ai培训·人工智能工程师·物理定律
lili-felicity1 小时前
CANN加速Stable Diffusion文生图推理:从UNet优化到内存复用
人工智能·aigc
哈__1 小时前
CANN加速语音合成TTS推理:声学模型与声码器优化
人工智能
哈__1 小时前
CANN加速VAE变分自编码器推理:潜在空间重构与编码解码优化
人工智能·深度学习·重构
美狐美颜SDK开放平台1 小时前
多终端适配下的人脸美型方案:美颜SDK工程开发实践分享
人工智能·音视频·美颜sdk·直播美颜sdk·视频美颜sdk
哈__1 小时前
CANN加速Image Captioning图像描述生成:视觉特征提取与文本生成优化
人工智能
觉醒大王1 小时前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
禁默1 小时前
Ops-Transformer深入:CANN生态Transformer专用算子库赋能多模态生成效率跃迁
人工智能·深度学习·transformer·cann
杜子不疼.1 小时前
基于CANN GE图引擎的深度学习模型编译与优化技术
人工智能·深度学习
L、2181 小时前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构