【YOLO数据集】车辆类型检测

📥 1、背景

随着智能交通系统(ITS)的高速演进与智慧城市建设的深入推进,车辆类型精准识别已成为交通流量管控、违章执法取证、停车场智能管理及自动驾驶环境感知的核心技术支撑。当前城市路网中乘用车、商用车、特种作业车等多类型车辆混行特征显著,据统计,我国城市主干道高峰时段车辆类型占比波动幅度可达 40% 以上,这对识别算法的鲁棒性与适应性提出了严苛要求。然而传统车辆类型识别方法存在诸多局限:基于人工特征提取的算法易受光照突变、天气干扰、车辆遮挡等复杂场景影响,识别准确率不足 75%;基于多阶段检测的深度学习模型虽精度有所提升,但推理时延普遍超过 200ms,难以满足实时交通监测的需求。此外,不同车型间的尺度差异大、相似车型特征区分度低等问题,进一步制约了传统算法在实际交通场景中的规模化应用。在此背景下,兼具检测精度与实时性优势的算法框架,为车辆类型识别提供了高效可行的技术路径,其单阶段端到端的检测模式,可有效整合目标定位与类型分类任务,通过特征金字塔网络与多尺度融合策略,显著提升对小型乘用车、大型货车等不同尺度车型的识别能力,为智能交通系统的落地应用奠定了坚实基础。

📌 2、数据集概览

项目 内容
数据集名称 车辆类型数据集
任务类型 目标检测(Object Detection)
类别 'car', 'bus', 'truck'
标注格式 YOLO TXT 格式(<类别> <中心x> <中心y> <宽度> <高度>,坐标和尺寸均为相对于图像宽高的归一化值(0-1))
图片总数 7000
标注总数 9221

🗂 3、数据详情

类别ID 类别名称 图片数量 标注数量
0 car 12251 43867
1 bus 3952 6069
2 truck 6127 9973
总计 - 16270 59909

✨ 4、效果演示

🧠 5、模型训练

1、安装miniconda

地址: https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

环境变量(根据实际的安装目录配置):

复制代码
C:\ProgramData\miniconda3 
C:\ProgramData\miniconda3\Scripts 
C:\ProgramData\miniconda3\Library\bin 

2、创建虚拟环境

shell 复制代码
conda create -n yolo python==3.8
# 查看现有环境
conda env list
# 激活环境 
conda activate yolo
# 激活失败 (执行该命令后重新进入cmd)
conda init cmd.exe 

3、源码下载

https://github.com/ultralytics/ultralytics

(注意:不同版本的yolo在不同tag)

4、训练脚本

python 复制代码
import warnings  
warnings.filterwarnings('ignore')  
from ultralytics import YOLO  
  
if __name__ == '__main__':  
    model = YOLO('ultralytics/cfg/models/v8/yolov8n.pt')  # 指定YOLO模型对象,并加载指定配置文件中的模型配置  
    # model.load('yolov8s.pt')      #加载预训练的权重文件'yolov8s.pt',加速训练并提升模型性能  
    model.train(data='ultralytics/cfg/datasets/data36.yaml',  # 指定训练数据集的配置文件路径,这个.yaml文件包含了数据集的路径和类别信息  
                cache=False,  # 是否缓存数据集以加快后续训练速度,False表示不缓存  
                imgsz=640,  # 指定训练时使用的图像尺寸,640表示将输入图像调整为640x640像素  
                epochs=100,  # 设置训练的总轮数为200轮  
                batch=8,  # 设置每个训练批次的大小为16,即每次更新模型时使用16张图片  
                close_mosaic=0,  # 设置在训练结束前多少轮关闭 Mosaic 数据增强,10 表示在训练的最后 10 轮中关闭 Mosaic                workers=16,  # 设置用于数据加载的线程数为8,更多线程可以加快数据加载速度  
                patience=300,  # 在训练时,如果经过50轮性能没有提升,则停止训练(早停机制)  
                device='0',  # 指定使用的设备,'0'表示使用第一块GPU进行训练  
                optimizer='SGD',  # 设置优化器为SGD(随机梯度下降),用于模型参数更新  
                )

5、配置文件 data.yaml

yaml 复制代码
path: D:/data/yoloTrain/车辆目标类型
train: images/train
val: images/val
nc: 3
names: ['car', 'bus', 'truck']

🛠 6、配套服务

我们提供一站式视觉解决方案,包括:

  • 模型训练与调优指导
  • 部署环境远程配置
  • 定制标注与数据增强
  • 毕业设计/课题辅导
  • 企业项目合作开发

❓ 7、常见问题

Q:标注格式如何转换?

A:提供Python转换脚本,支持YOLO→VOC/COCO,开箱即用:点击下载转换脚本

相关推荐
EZ_Python2 小时前
告别WPS会员!用Python自制电子发票批量打印排版工具
python·自动化
写文章的大米2 小时前
1 分钟读懂:Python 装饰器
python
2501_921649492 小时前
股指期货 API 入门指南:如何获取实时行情与构建交易系统
python·websocket·金融·区块链·restful
Full Stack Developme2 小时前
Spring Security 与 Apache Shiro 两大安全框架比较
spring boot·python·安全
小股虫2 小时前
缓存攻防战:在增长中台设计一套高效且安全的缓存体系
java·分布式·安全·缓存·微服务·架构
NewCarRen2 小时前
E-ACO架构驱动:云辅助车联网的全链路访问控制与安全防护
安全·架构
杰瑞哥哥2 小时前
快速搭建Web前端(streamlit使用指南)
python·信息可视化·web·模型部署
小途软件2 小时前
基于计算机视觉的课堂行为编码研究
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·django
智航GIS2 小时前
9.2 多进程入门
数据库·python
小途软件2 小时前
基于计算机视觉的桥梁索力测试方法
人工智能·python·语言模型·自然语言处理·django