07实战经验 EfficientNet 的核心思想、网络结构、缩放策略、优势与应用(2026年01月)【待完善】

论文原文:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networkshttps://arxiv.org/pdf/1905.11946

官方源码:tpu/models/official/efficientnet at master · tensorflow/tpu · GitHubhttps://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

pytorch实现源码:

GitHub - lukemelas/EfficientNet-PyTorch: A PyTorch implementation of EfficientNethttps://github.com/lukemelas/EfficientNet-PyTorch(目标是小目标 + 高分辨率 + 工业场景 的目标检测任务)

基础知识补充

情况 A:保存为未压缩图像(如 RGB 8-bit)如:当然我们的是4864*3648
  • 分辨率:1920 × 1080 ≈ 2.1 百万像素
  • 每像素 3 字节(R+G+B)
  • 单帧大小 ≈ 1920 × 1080 × 3 = 6,220,800 字节 ≈ 6.22 MB
  • 1000 帧 ≈ 6.22 GB

目标:EfficientDet-D0/D1(待实现)

RT-DETR

YOLOv8 + P2 head

为什么需要 EfficientNet?

在 EfficientNet(2019 年由 Google Research 提出)之前,提升 CNN 性能的常见方法是:

  • 增加网络深度(如 ResNet → ResNet-152)
  • 增加网络宽度(更多通道)
  • 使用更高分辨率的输入图像

核心思想:Compound Scaling(复合缩放)

关于基础模型:EfficientNet-B0的笔记

作者使用神经架构搜索(NAS)(待学习) 自动设计了一个轻量高效的基线模型 ------ EfficientNet-B0

  • 输入尺寸:224×224
  • 结构基于 MobileNetV2 的 inverted residual block + Squeeze-and-Expansion(SE)注意力机制
  • 称为 MBConv block(Mobile Inverted Bottleneck Convolution)
相关推荐
延凡科技9 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329729 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔11 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案11 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信11 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博13 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件13 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车14 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经14 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘15 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt