VAE中Encoder和Decoder的理论基础的探索

这里从Encoder和Decoder的角度探索VAE。

所用示例参考和修改自网络资料。

1. Encoder和Decoder

1.1 编码器Encoder

编码器是一个变分近似后验分布,它将输入数据映射到潜在变量的条件分布:

其中:

是编码器神经网络参数

是编码器输出的均值和标准差

因为采用了压缩表示,潜在空间维度通常远小于输入空间维度。

1.2 解码器Decoder

解码器是生成分布,它将潜在变量映射回数据空间:

其中是解码器神经网络参数。

先验分布(Prior)

假设潜在变量的先验分布为标准正态分布:

2 ELBO完整推导

2.1 ELBO的目标

对于VAE,ELBO的目标是最大化边际似然

对于数据集,希望最大化:

其中单个数据点的边际似然为:

2.2 变分下界推导

步骤1:引入变分分布

对于任意变分分布,边际似然可写为:

步骤2:应用Jensen不等式

步骤3:得到ELBO基本形式

定义证据下界(ELBO):

因此:

步骤4:分解ELBO

展开联合分布

步骤5:识别KL散度

第二项是负的KL散度:

最终ELBO表达式:

2.3 直观解释

1)重构项(第一项):

  • 衡量解码器从潜在变量重构原始数据的能力

  • 相当于自动编码器的重构损失

  1. 正则化项(第二项):
  • 强制编码器输出的分布接近先验分布p(z)

  • 防止过拟合,确保潜在空间有良好的结构

2.4 重参数化技巧

重参数化技巧(Reparameterization Trick)

为了反向传播能联通随机采样过程,将采样操作重参数化为:

这使得梯度可计算。

2.5 训练目标

VAE的训练目标是最大化所有数据的ELBO之和:

其关键要点如下

1)变分推断框架:VAE将生成模型训练转化为变分推断问题

2)amortized推断:使用神经网络编码器实现高效的推断

3)端到端训练:通过重参数化技巧实现ELBO的梯度估计

4)平衡 trade-off:重构项与KL散度项的平衡控制着生成质量与多样性

VAE实现了可扩展深度生成模型的训练,为扩散模型、归一化流等模型奠定了基础。

reference


相关推荐
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰2 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
丝斯20113 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技7 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329727 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔8 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案8 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
TracyCoder1239 小时前
LeetCode Hot100(15/100)——54. 螺旋矩阵
算法·leetcode·矩阵