优惠券省钱app高并发秒杀系统:基于Redis与消息队列的架构设计
大家好,我是省赚客APP研发者阿宝!
在省赚客APP中,优惠券秒杀活动是提升用户活跃度和转化率的重要手段。面对数万甚至百万级用户同时抢券的场景,传统数据库直写方案极易导致系统雪崩。为此,我们构建了一套基于Redis缓存与消息队列(如RocketMQ)的高并发秒杀架构,有效支撑了单场活动10万+ QPS的请求压力。
整体架构设计
系统采用"缓存前置 + 异步削峰 + 最终一致性"策略。核心流程如下:
- 用户请求进入网关层后,首先校验用户身份与活动资格;
- 通过Redis原子操作判断库存是否充足,并完成预扣减;
- 若成功,则将秒杀订单信息投递至消息队列;
- 后台消费者异步处理订单落库、优惠券发放等逻辑;
- 前端通过轮询或WebSocket获取结果。
该架构将数据库写压力从峰值转移到后台异步处理,极大提升了系统吞吐能力。

Redis库存预扣减实现
我们使用Redis的DECR命令实现原子性库存扣减。为防止超卖,需确保库存值非负。关键代码如下(Java):
java
package juwatech.cn.seckill.service;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;
@Service
public class SeckillStockService {
private final StringRedisTemplate redisTemplate;
public SeckillStockService(StringRedisTemplate redisTemplate) {
this.redisTemplate = redisTemplate;
}
public boolean tryDeductStock(String activityId) {
String stockKey = "seckill:stock:" + activityId;
Long current = redisTemplate.opsForValue().decrement(stockKey);
return current != null && current >= 0;
}
public void initStock(String activityId, int stock) {
String stockKey = "seckill:stock:" + activityId;
redisTemplate.opsForValue().setIfAbsent(stockKey, String.valueOf(stock));
}
}
注意:setIfAbsent确保活动库存仅初始化一次,避免重复覆盖。
防刷与限流机制
为防止恶意脚本刷券,我们在网关层集成令牌桶限流与用户行为校验。例如,每个用户每秒最多发起1次秒杀请求:
java
package juwatech.cn.seckill.gateway;
import com.google.common.util.concurrent.RateLimiter;
import org.springframework.stereotype.Component;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
@Component
public class UserRateLimiter {
private final Map<String, RateLimiter> userLimiters = new ConcurrentHashMap<>();
public boolean allowRequest(String userId) {
RateLimiter limiter = userLimiters.computeIfAbsent(userId, k -> RateLimiter.create(1.0));
return limiter.tryAcquire();
}
}
此外,结合Redis记录用户已参与活动状态,防止重复下单:
java
public boolean hasParticipated(String userId, String activityId) {
String key = "seckill:user:" + userId + ":activity:" + activityId;
Boolean exists = redisTemplate.hasKey(key);
if (Boolean.FALSE.equals(exists)) {
redisTemplate.opsForValue().set(key, "1", Duration.ofHours(24));
return false;
}
return true;
}
消息队列异步处理订单
秒杀成功后,将订单信息封装为消息发送至RocketMQ:
java
package juwatech.cn.seckill.mq;
import juwatech.cn.seckill.dto.SeckillOrderDTO;
import org.apache.rocketmq.spring.core.RocketMQTemplate;
import org.springframework.stereotype.Service;
@Service
public class SeckillMqProducer {
private final RocketMQTemplate rocketMQTemplate;
public SeckillMqProducer(RocketMQTemplate rocketMQTemplate) {
this.rocketMQTemplate = rocketMQTemplate;
}
public void sendSeckillOrder(SeckillOrderDTO order) {
rocketMQTemplate.convertAndSend("SECKILL_ORDER_TOPIC", order);
}
}
消费者端异步处理:
java
package juwatech.cn.seckill.mq.consumer;
import juwatech.cn.seckill.dto.SeckillOrderDTO;
import juwatech.cn.seckill.service.CouponGrantService;
import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;
import org.apache.rocketmq.spring.core.RocketMQListener;
import org.springframework.stereotype.Component;
@Component
@RocketMQMessageListener(topic = "SECKILL_ORDER_TOPIC", consumerGroup = "seckill-group")
public class SeckillOrderConsumer implements RocketMQListener<SeckillOrderDTO> {
private final CouponGrantService couponGrantService;
public SeckillOrderConsumer(CouponGrantService couponGrantService) {
this.couponGrantService = couponGrantService;
}
@Override
public void onMessage(SeckillOrderDTO order) {
try {
couponGrantService.grantCoupon(order.getUserId(), order.getCouponId());
// 记录订单到DB
} catch (Exception e) {
// 失败可重试或告警
}
}
}
数据一致性保障
由于采用异步模式,需确保最终一致性。我们通过以下措施:
- Redis库存扣减成功即视为"逻辑成功",前端可立即提示用户"抢购成功";
- 消息队列启用事务消息或本地消息表,确保订单不丢失;
- 定时对账任务校验Redis库存与数据库已发放数量,自动修复偏差。
例如,对账任务伪代码:
java
@Scheduled(fixedRate = 300000) // 每5分钟
public void reconcileStock() {
List<Activity> activities = activityMapper.getActiveActivities();
for (Activity act : activities) {
String redisStock = redisTemplate.opsForValue().get("seckill:stock:" + act.getId());
int dbIssued = couponRecordMapper.countByActivity(act.getId());
int expectedStock = act.getTotalStock() - dbIssued;
if (!String.valueOf(expectedStock).equals(redisStock)) {
// 触发告警或自动修正
}
}
}
压测与优化效果
上线前,我们使用JMeter模拟10万并发用户秒杀1万张券。优化后系统表现:
- 平均响应时间 < 80ms;
- 成功率 > 99.5%;
- 数据库CPU负载下降70%;
- 无超卖、无重复发放。
本文著作权归聚娃科技省赚客app开发者团队,转载请注明出处!