[Vulkan 学习之路] 08 - 给图片穿马甲:图像视图 (Image Views)

欢迎来到第八篇!

上一节我们成功创建了 Swap Chain ,此时我们的显存里已经躺着几张(通常是 2 或 3 张)VkImage 对象,随时准备被显示到屏幕上。

但是,如果你试图直接把这些 VkImage 传给渲染管线,Vulkan 会无情地拒绝你。

为什么?因为 VkImage 仅仅是一块代表像素数据的原始内存块。它不知道自己是 1D 的还是 2D 的,不知道是不是该把红蓝通道互换,也不知道自己有多少层 Mipmap。

你需要给它套上一层"滤镜"或者"马甲",告诉 Vulkan 如何去"看"这张图 。这个马甲就是 VkImageView

核心任务

我们的任务很简单:Swap Chain 里有多少张 Image,我们就得创建多少个对应的 ImageView。

准备工作

首先,在 HelloVulkanApp 类成员变量中添加一个容器,用来存放这些视图。

cpp 复制代码
// 存放交换链图像的视图
std::vector<VkImageView> swapChainImageViews;

编写 createImageViews

我们需要遍历上一节获取的 swapChainImages,为每一个 Image 创建一个 View。

cpp 复制代码
void createImageViews() {
    // 1. 调整容器大小以匹配图像数量
    swapChainImageViews.resize(swapChainImages.size());

    // 2. 遍历每一张 Image
    for (size_t i = 0; i < swapChainImages.size(); i++) {
        VkImageViewCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
        
        // 绑定原始 Image
        createInfo.image = swapChainImages[i];
        
        // 告诉 Vulkan 这是一张 2D 纹理
        createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
        
        // 格式必须和 Swap Chain 的格式一致 (比如 VK_FORMAT_B8G8R8A8_SRGB)
        createInfo.format = swapChainImageFormat;

        // 组件映射 (Swizzle)
        // 这里我们可以进行颜色通道的重映射。例如把红色映射成透明度。
        // 但通常我们使用 IDENTITY,表示 R就是R,G就是G,不做修改。
        createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
        createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
        createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
        createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;

        // 子资源范围 (Subresource Range)
        // 这里定义了我们要"看"图片的哪一部分
        createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // 我们要把能在屏幕上显示的颜色写进去
        createInfo.subresourceRange.baseMipLevel = 0;   // 没有 Mipmap,从第0级开始
        createInfo.subresourceRange.levelCount = 1;     // 只有 1 级
        createInfo.subresourceRange.baseArrayLayer = 0; // 不是 VR 3D 图像
        createInfo.subresourceRange.layerCount = 1;     // 只有 1 层

        // 创建视图
        if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
            throw std::runtime_error("failed to create image views!");
        }
    }
}

整合与清理

修改初始化流程

这步必须紧跟在 createSwapChain 之后。

cpp 复制代码
void initVulkan() {
    createInstance();
    setupDebugMessenger();
    createSurface();
    pickPhysicalDevice();
    createLogicalDevice();
    createSwapChain();
    createImageViews(); // <--- 新增
}

修改清理流程

既然我们用循环创建了它们,也得用循环销毁它们。

注意顺序: Image Views 依赖于 Swap Chain 里的 Image(虽然我们不需要手动销毁 Image,但 View 必须在 Swap Chain 销毁之前或同时销毁)。通常放在 Swap Chain 销毁之前。

cpp 复制代码
void cleanup() {
    // 循环销毁所有视图
    for (auto imageView : swapChainImageViews) {
        vkDestroyImageView(device, imageView, nullptr);
    }
    
    vkDestroySwapchainKHR(device, swapChain, nullptr);
    vkDestroyDevice(device, nullptr);
    // ... 后续代码
}

完整代码:

cpp 复制代码
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#include <iostream>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <cstdint>
#include <limits>
#include <optional>
#include <set>

const uint32_t WIDTH = 800;
const uint32_t HEIGHT = 600;

const std::vector<const char*> validationLayers = {
    "VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
    VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
    auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
    } else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
    if (func != nullptr) {
        func(instance, debugMessenger, pAllocator);
    }
}

struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;
    std::optional<uint32_t> presentFamily;

    bool isComplete() {
        return graphicsFamily.has_value() && presentFamily.has_value();
    }
};

struct SwapChainSupportDetails {
    VkSurfaceCapabilitiesKHR capabilities;
    std::vector<VkSurfaceFormatKHR> formats;
    std::vector<VkPresentModeKHR> presentModes;
};

class HelloTriangleApplication {
public:
    void run() {
        initWindow();
        initVulkan();
        mainLoop();
        cleanup();
    }

private:
    GLFWwindow* window;

    VkInstance instance;
    VkDebugUtilsMessengerEXT debugMessenger;
    VkSurfaceKHR surface;

    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
    VkDevice device;

    VkQueue graphicsQueue;
    VkQueue presentQueue;

    VkSwapchainKHR swapChain;
    std::vector<VkImage> swapChainImages;
    VkFormat swapChainImageFormat;
    VkExtent2D swapChainExtent;
    std::vector<VkImageView> swapChainImageViews;

    void initWindow() {
        glfwInit();

        glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
        glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

        window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
    }

    void initVulkan() {
        createInstance();
        setupDebugMessenger();
        createSurface();
        pickPhysicalDevice();
        createLogicalDevice();
        createSwapChain();
        createImageViews();
    }

    void mainLoop() {
        while (!glfwWindowShouldClose(window)) {
            glfwPollEvents();
        }
    }

    void cleanup() {
        for (auto imageView : swapChainImageViews) {
            vkDestroyImageView(device, imageView, nullptr);
        }

        vkDestroySwapchainKHR(device, swapChain, nullptr);
        vkDestroyDevice(device, nullptr);

        if (enableValidationLayers) {
            DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
        }

        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);

        glfwDestroyWindow(window);

        glfwTerminate();
    }

    void createInstance() {
        if (enableValidationLayers && !checkValidationLayerSupport()) {
            throw std::runtime_error("validation layers requested, but not available!");
        }

        VkApplicationInfo appInfo{};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;

        VkInstanceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;

        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();

        VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();

            populateDebugMessengerCreateInfo(debugCreateInfo);
            createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
        } else {
            createInfo.enabledLayerCount = 0;

            createInfo.pNext = nullptr;
        }

        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }

    void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
        createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
        createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
        createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
        createInfo.pfnUserCallback = debugCallback;
    }

    void setupDebugMessenger() {
        if (!enableValidationLayers) return;

        VkDebugUtilsMessengerCreateInfoEXT createInfo;
        populateDebugMessengerCreateInfo(createInfo);

        if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
            throw std::runtime_error("failed to set up debug messenger!");
        }
    }

    void createSurface() {
        if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
            throw std::runtime_error("failed to create window surface!");
        }
    }

    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }

        std::vector<VkPhysicalDevice> devices(deviceCount);
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

        for (const auto& device : devices) {
            if (isDeviceSuitable(device)) {
                physicalDevice = device;
                break;
            }
        }

        if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }

    void createLogicalDevice() {
        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

        std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
        std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};

        float queuePriority = 1.0f;
        for (uint32_t queueFamily : uniqueQueueFamilies) {
            VkDeviceQueueCreateInfo queueCreateInfo{};
            queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
            queueCreateInfo.queueFamilyIndex = queueFamily;
            queueCreateInfo.queueCount = 1;
            queueCreateInfo.pQueuePriorities = &queuePriority;
            queueCreateInfos.push_back(queueCreateInfo);
        }

        VkPhysicalDeviceFeatures deviceFeatures{};

        VkDeviceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

        createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
        createInfo.pQueueCreateInfos = queueCreateInfos.data();

        createInfo.pEnabledFeatures = &deviceFeatures;

        createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
        createInfo.ppEnabledExtensionNames = deviceExtensions.data();

        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();
        } else {
            createInfo.enabledLayerCount = 0;
        }

        if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
            throw std::runtime_error("failed to create logical device!");
        }

        vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
        vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
    }

    void createSwapChain() {
        SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

        VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
        VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
        VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

        uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
        if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
            imageCount = swapChainSupport.capabilities.maxImageCount;
        }

        VkSwapchainCreateInfoKHR createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        createInfo.surface = surface;

        createInfo.minImageCount = imageCount;
        createInfo.imageFormat = surfaceFormat.format;
        createInfo.imageColorSpace = surfaceFormat.colorSpace;
        createInfo.imageExtent = extent;
        createInfo.imageArrayLayers = 1;
        createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
        uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};

        if (indices.graphicsFamily != indices.presentFamily) {
            createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
            createInfo.queueFamilyIndexCount = 2;
            createInfo.pQueueFamilyIndices = queueFamilyIndices;
        } else {
            createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        }

        createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
        createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        createInfo.presentMode = presentMode;
        createInfo.clipped = VK_TRUE;

        createInfo.oldSwapchain = VK_NULL_HANDLE;

        if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
            throw std::runtime_error("failed to create swap chain!");
        }

        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
        swapChainImages.resize(imageCount);
        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());

        swapChainImageFormat = surfaceFormat.format;
        swapChainExtent = extent;
    }

    void createImageViews() {
        swapChainImageViews.resize(swapChainImages.size());

        for (size_t i = 0; i < swapChainImages.size(); i++) {
            VkImageViewCreateInfo createInfo{};
            createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
            createInfo.image = swapChainImages[i];
            createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
            createInfo.format = swapChainImageFormat;
            createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
            createInfo.subresourceRange.baseMipLevel = 0;
            createInfo.subresourceRange.levelCount = 1;
            createInfo.subresourceRange.baseArrayLayer = 0;
            createInfo.subresourceRange.layerCount = 1;

            if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create image views!");
            }
        }
    }

    VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
        for (const auto& availableFormat : availableFormats) {
            if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
                return availableFormat;
            }
        }

        return availableFormats[0];
    }

    VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
        for (const auto& availablePresentMode : availablePresentModes) {
            if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
                return availablePresentMode;
            }
        }

        return VK_PRESENT_MODE_FIFO_KHR;
    }

    VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
        if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
            return capabilities.currentExtent;
        } else {
            int width, height;
            glfwGetFramebufferSize(window, &width, &height);

            VkExtent2D actualExtent = {
                static_cast<uint32_t>(width),
                static_cast<uint32_t>(height)
            };

            actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
            actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);

            return actualExtent;
        }
    }

    SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
        SwapChainSupportDetails details;

        vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

        uint32_t formatCount;
        vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

        if (formatCount != 0) {
            details.formats.resize(formatCount);
            vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
        }

        uint32_t presentModeCount;
        vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

        if (presentModeCount != 0) {
            details.presentModes.resize(presentModeCount);
            vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
        }

        return details;
    }

    bool isDeviceSuitable(VkPhysicalDevice device) {
        QueueFamilyIndices indices = findQueueFamilies(device);

        bool extensionsSupported = checkDeviceExtensionSupport(device);

        bool swapChainAdequate = false;
        if (extensionsSupported) {
            SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
            swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
        }

        return indices.isComplete() && extensionsSupported && swapChainAdequate;
    }

    bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
        uint32_t extensionCount;
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

        std::vector<VkExtensionProperties> availableExtensions(extensionCount);
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

        std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

        for (const auto& extension : availableExtensions) {
            requiredExtensions.erase(extension.extensionName);
        }

        return requiredExtensions.empty();
    }

    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
        QueueFamilyIndices indices;

        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
            }

            VkBool32 presentSupport = false;
            vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

            if (presentSupport) {
                indices.presentFamily = i;
            }

            if (indices.isComplete()) {
                break;
            }

            i++;
        }

        return indices;
    }

    std::vector<const char*> getRequiredExtensions() {
        uint32_t glfwExtensionCount = 0;
        const char** glfwExtensions;
        glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

        std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

        if (enableValidationLayers) {
            extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
        }

        return extensions;
    }

    bool checkValidationLayerSupport() {
        uint32_t layerCount;
        vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

        std::vector<VkLayerProperties> availableLayers(layerCount);
        vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

        for (const char* layerName : validationLayers) {
            bool layerFound = false;

            for (const auto& layerProperties : availableLayers) {
                if (strcmp(layerName, layerProperties.layerName) == 0) {
                    layerFound = true;
                    break;
                }
            }

            if (!layerFound) {
                return false;
            }
        }

        return true;
    }

    static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
        std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

        return VK_FALSE;
    }
};

int main() {
    HelloTriangleApplication app;

    try {
        app.run();
    } catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}

总结

这就是 Image View 的全部内容。虽然代码不多,但它再次印证了 Vulkan 的 "Explicit" (显式) 特性:哪怕只是想简单地用一张图片,你也必须显式地告诉驱动程序图片的类型、格式和用途。

现在的状态是:

  • Swap Chain: 提供了画布(Images)。

  • Image Views: 提供了看画布的眼镜。

但我们还缺一支"画笔"和一个"绘图指南"。

下一步预告

接下来,我们将进入 Vulkan 中最庞大、最硬核的部分。我们将不再是在 API 外围打转,而是要深入显卡的渲染核心。

我们将开始构建 Graphics Pipeline (图形管线)

在接下来的几篇中,我们将手写 Shader(着色器),配置顶点输入、光栅化器、多重采样、深度测试... 这一步的配置代码非常长,但这是画出那个三角形必经的试炼。

深吸一口气,准备编写你的第一个 Shader 吧!

详见:Image views - Vulkan Tutorial

相关推荐
m0_748250032 小时前
C++ 信号处理
c++·算法·信号处理
yuyanjingtao2 小时前
动态规划 背包 之 凑钱
c++·算法·青少年编程·动态规划·gesp·csp-j/s
scx201310044 小时前
20260112树状数组总结
数据结构·c++·算法·树状数组
古城小栈4 小时前
Rust 交叉编译:Windows ====> Linux (musl 静态编译)
linux·windows·rust
星竹晨L4 小时前
【C++内存安全管理】智能指针的使用和原理
开发语言·c++
智者知已应修善业4 小时前
【C语言 dfs算法 十四届蓝桥杯 D飞机降落问题】2024-4-12
c语言·c++·经验分享·笔记·算法·蓝桥杯·深度优先
玖釉-4 小时前
[Vulkan 学习之路] 09 - 显卡的流水线工厂:图形管线概览 (Graphics Pipeline)
c++·windows·图形渲染
晋人在秦 老K5 小时前
Windows 7还能用!VxKex实现Edge浏览器及现代应用兼容方案
windows·edge·win7系统兼容性修复·api扩展工具·老旧系统运行新软件·dll缺失错误解决·兼容性调试方案
love530love5 小时前
EPGF 新手教程 22教学模板不是压缩包:EPGF 如何设计“可复制、可检查、可回收”的课程模板?
ide·人工智能·windows·python·架构·pycharm·epgf