欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
LangChain4j实战全系列链接
- 准备工作
- 极速开发体验
- 细说聊天API
- 集成到spring-boot
- 图像模型
- 聊天记忆,低级API版
- 聊天记忆,高级API版
- 响应流式传输
- 高级API(AI Services)实例的创建方式
- 结构化输出之一,用提示词指定输出格式
- 结构化输出之二,function call
- 结构化输出之三,json模式
- 函数调用,低级API版本
- 函数调用,高级API版本
本篇概览
- 本文是关于LangChain4j支持的函数调用的第二篇,《前文》咱们已经知道了什么是函数调用,也参与了完整的低级API版函数调用的开发
- 亲手完成所有实现的好处就是逻辑全部清楚,也明白其实写了很多与业务无关的代码,必然会思考一个问题:与LLM两次通信的代码有必要自己写吗?LangChain4j能不能帮我们把下图红框中这些事情做了?

- LangChain4j当然考虑到了这些,通过高级API(AiService)把这些都封装进去了,咱们使用者只要定义自己的业务接口,然后调用这些接口即可,业务代码完全不到与LLM交互的细节
- 基于高级API的函数调用编码实战,就是接下来本篇的内容,用于实战的业务功能还是和前文一样:天气预报的函数调用
源码下载(觉得作者啰嗦的,直接在这里下载)
- 如果您只想快速浏览完整源码,可以在GitHub下载代码直接运行,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
| 名称 | 链接 | 备注 |
|---|---|---|
| 项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
| git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
| git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
- 这个git项目中有多个文件夹,本篇的源码在langchain4j-tutorials文件夹下,如下图红色箭头所示:

编码:父工程调整
- 《准备工作》中创建了整个《LangChain4j实战》系列代码的父工程,本篇实战会在父工程下新建一个子工程,所以这里要对父工程的pom.xml做少量修改
- modules中增加一个子工程,如下图黄框所示

编码:新增子工程
- 新增名为tools-high-level的子工程
- langchain4j-totorials目录下新增名tools-high-level为的文件夹
- tools-high-level文件夹下新增pom.xml,内容如下
xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.bolingcavalry</groupId>
<artifactId>langchain4j-totorials</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>tools-high-level</artifactId>
<packaging>jar</packaging>
<dependencies>
<!-- Lombok -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!-- Spring Boot Starter -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<!-- Spring Boot Web -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring Boot Test -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- JUnit Jupiter Engine -->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<scope>test</scope>
</dependency>
<!-- Mockito Core -->
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<scope>test</scope>
</dependency>
<!-- Mockito JUnit Jupiter -->
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-junit-jupiter</artifactId>
<scope>test</scope>
</dependency>
<!-- LangChain4j Core -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-core</artifactId>
</dependency>
<!-- LangChain4j OpenAI支持(用于通义千问的OpenAI兼容接口) -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
</dependency>
<!-- 官方 langchain4j(包含 AiServices 等服务类) -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-community-dashscope</artifactId>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
</dependency>
<!-- 日志依赖由Spring Boot Starter自动管理,无需单独声明 -->
</dependencies>
<build>
<plugins>
<!-- Spring Boot Maven Plugin -->
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>3.3.5</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
- 在langchain4j-totorials/tools-high-level/src/main/resources新增配置文件application.properties,内容如下,主要是三个模型的配置信息,记得把your-api-key换成您自己的apikey,另外由于用到了接口盒子的服务查询,相关的ulr模板、用户id、用户key也在这里面配置好
properties
# Spring Boot 应用配置
server.port=8080
server.servlet.context-path=/
# LangChain4j 使用OpenAI兼容模式配置通义千问模型
# 注意:请将your-api-key替换为您实际的通义千问API密钥
langchain4j.open-ai.chat-model.api-key=your-api-key
# 通义千问模型名称
langchain4j.open-ai.chat-model.model-name=qwen3-max
# 阿里云百炼OpenAI兼容接口地址
langchain4j.open-ai.chat-model.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1
# 日志配置
logging.level.root=INFO
logging.level.com.bolingcavalry=DEBUG
logging.pattern.console=%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
# 应用名称
spring.application.name=tools-high-level
# 调用接口盒子的接口查询天气,这里是地址
weather.tools.url=https://cn.apihz.cn/api/tianqi/tqyb.php?id=%s&key=%s&sheng=%s&place=%s
# 调用接口盒子的接口查询天气,这里是ID,请改成您自己的注册ID
weather.tools.id=your-id
# 调用接口盒子的接口查询天气,这里是通讯KEY,请改成您自己的通讯KEY
weather.tools.key=your-key
- 新增启动类,依旧平平无奇
java
package com.bolingcavalry;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
* Spring Boot应用程序的主类
*/
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
- 接口盒子返回的json数据,要准备数据结构来保存,由于有嵌套对象,所以需要两个pojo,第一个是NowInfo,存的是实时数据,如温度湿度(这段数据结构的代码和前文一样)
java
package com.bolingcavalry.vo;
import lombok.Data;
import java.io.Serializable;
@Data
public class NowInfo implements Serializable {
private double precipitation;
private double temperature;
private int pressure;
private int humidity;
private String windDirection;
private int windDirectionDegree;
private int windSpeed;
private String windScale;
private double feelst;
private String uptime;
}
- 第二个pojo是WeatherInfo,对应的是接口返回的完整JSON(这段数据结构的代码和前文一样)
java
package com.bolingcavalry.vo;
import lombok.Data;
import java.io.Serializable;
@Data
public class WeatherInfo implements Serializable {
private int code;
private String guo;
private String sheng;
private String shi;
private String name;
private String weather1;
private String weather2;
private int wd1;
private int wd2;
private String winddirection1;
private String winddirection2;
private String windleve1;
private String windleve2;
private String weather1img;
private String weather2img;
private double lon;
private double lat;
private String uptime;
private NowInfo nowinfo;
private Object alarm;
}
- 然后是本篇的第一个重点:自定义函数,该函数的作用是调用接口盒子的HTTP服务获取实时天气,需要注意的是要用Tool注解修饰(自定义函数的代码也和前文一模一样)
java
package com.bolingcavalry.service;
import java.net.URLEncoder;
import java.nio.charset.StandardCharsets;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.client.RestTemplate;
import com.bolingcavalry.vo.WeatherInfo;
import dev.langchain4j.agent.tool.P;
import dev.langchain4j.agent.tool.Tool;
import lombok.Data;
@Data
public class WeatherTools {
private static final Logger logger = LoggerFactory.getLogger(WeatherTools.class);
private String weatherToolsUrl;
private String weatherToolsId;
private String weatherToolsKey;
@SuppressWarnings("null")
@Tool("返回给定省份和城市的天气预报综合信息")
public WeatherInfo getWeather(@P("应返回天气预报的省份") String province, @P("应返回天气预报的城市") String city) throws IllegalArgumentException {
String encodedProvince = URLEncoder.encode(province, StandardCharsets.UTF_8);
String encodedCity = URLEncoder.encode(city, StandardCharsets.UTF_8);
String url = String.format(weatherToolsUrl, weatherToolsId, weatherToolsKey, encodedProvince, encodedCity);
logger.info("调用天气接口:{}", url);
return new RestTemplate().getForObject(url, WeatherInfo.class);
}
}
- 由于本篇是高级API,所以增加一个自定义接口,里面是获取天气的方法定义,该接口的实现就是和LLM的两次交互以及函数调用,这些都是LangChain4j在背后实现的
java
package com.bolingcavalry.service;
public interface Assistant {
/**
* 通过提示词查询最新的天气情况
*
* @param userMessage 用户消息
* @return 助手生成的回答
*/
String getWeather(String userMessage);
}
- 接着是配置类,里面创建了天气服务类和LLM模型服务类的bean,这个和前文一样没啥特别的,就是传入一些参数,还有model实例OpenAiChatModel,它设置的自定义监听类,可以把所有和LLM交互的信息在日志中打印出来,最后有个重点:assistant实例的创建必须执行tools方法,这样LangChain4j才知道有哪些函数可用
java
package com.bolingcavalry.config;
import java.util.List;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.bolingcavalry.service.Assistant;
import com.bolingcavalry.service.WeatherTools;
import dev.langchain4j.agent.tool.ToolExecutionRequest;
import dev.langchain4j.data.message.AiMessage;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.model.chat.listener.ChatModelErrorContext;
import dev.langchain4j.model.chat.listener.ChatModelListener;
import dev.langchain4j.model.chat.listener.ChatModelRequestContext;
import dev.langchain4j.model.chat.listener.ChatModelResponseContext;
import dev.langchain4j.model.chat.response.ChatResponse;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
/**
* LangChain4j配置类
*/
@Configuration
public class LangChain4jConfig {
private static final Logger logger = LoggerFactory.getLogger(LangChain4jConfig.class);
@Value("${langchain4j.open-ai.chat-model.api-key}")
private String apiKey;
@Value("${langchain4j.open-ai.chat-model.model-name:qwen-turbo}")
private String modelName;
@Value("${langchain4j.open-ai.chat-model.base-url}")
private String baseUrl;
/**
* 创建并配置OpenAiChatModel实例(使用通义千问的OpenAI兼容接口)
*
* @return OpenAiChatModel实例
*/
@Bean
public OpenAiChatModel chatModel() {
ChatModelListener listener = new ChatModelListener() {
@Override
public void onRequest(ChatModelRequestContext reqCtx) {
// 1. 拿到 List<ChatMessage>
List<ChatMessage> messages = reqCtx.chatRequest().messages();
logger.info("发到LLM的请求: {}", messages);
}
@Override
public void onResponse(ChatModelResponseContext respCtx) {
// 2. 先取 ChatModelResponse
ChatResponse response = respCtx.chatResponse();
// 3. 再取 AiMessage
AiMessage aiMessage = response.aiMessage();
// 4. 工具调用
List<ToolExecutionRequest> tools = aiMessage.toolExecutionRequests();
for (ToolExecutionRequest t : tools) {
logger.info("LLM响应, 执行函数[{}], 函数入参 : {}", t.name(), t.arguments());
}
// 5. 纯文本
if (aiMessage.text() != null) {
logger.info("LLM响应, 纯文本 : {}", aiMessage.text());
}
}
@Override
public void onError(ChatModelErrorContext errorCtx) {
errorCtx.error().printStackTrace();
}
};
return OpenAiChatModel.builder()
.apiKey(apiKey)
.modelName(modelName)
.baseUrl(baseUrl)
.listeners(List.of(listener))
.build();
}
@Value("${weather.tools.url}")
private String weatherToolsUrl;
@Value("${weather.tools.id}")
private String weatherToolsId;
@Value("${weather.tools.key}")
private String weatherToolsKey;
@Bean
public WeatherTools weatherTools() {
WeatherTools tools = new WeatherTools();
tools.setWeatherToolsUrl(weatherToolsUrl);
tools.setWeatherToolsId(weatherToolsId);
tools.setWeatherToolsKey(weatherToolsKey);
return tools;
}
@Bean
public Assistant assistant(OpenAiChatModel chatModel, WeatherTools weatherTools) {
return AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(weatherTools)
.build();
}
}
- 接下来是服务类,还记得前文低级API的服务类吗?咱们可是写了不少代码,如今用了高级API,事情一下子简单了,只需要调用bean的方法就行,不过简单也是有代价的:流程固定不能随心所欲的调整了(例如调用本地函数时加些业务逻辑)
java
package com.bolingcavalry.service;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class QwenService {
@Autowired
private Assistant assistant;
public String getWeather(String prompt) {
return assistant.getWeather(prompt)+ "[from high level getWeather]";
}
}
- 最后是controller类,这里准备个http接口响应,用来调用前的服务类的功能
java
package com.bolingcavalry.controller;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import com.bolingcavalry.service.QwenService;
import lombok.Data;
/**
* 通义千问控制器,处理与大模型交互的HTTP请求
*/
@RestController
@RequestMapping("/api/qwen")
public class QwenController {
private final QwenService qwenService;
/**
* 构造函数,通过依赖注入获取QwenService实例
*
* @param qwenService QwenService实例
*/
public QwenController(QwenService qwenService) {
this.qwenService = qwenService;
}
/**
* 提示词请求实体类
*/
@Data
static class PromptRequest {
private String prompt;
private int userId;
private String province;
private String city;
}
/**
* 响应实体类
*/
@Data
static class Response {
private String result;
public Response(String result) {
this.result = result;
}
}
/**
* 检查请求体是否有效
*
* @param request 包含提示词的请求体
* @return 如果有效则返回null,否则返回包含错误信息的ResponseEntity
*/
private ResponseEntity<Response> check(PromptRequest request) {
if (request == null || request.getPrompt() == null || request.getPrompt().trim().isEmpty()) {
return ResponseEntity.badRequest().body(new Response("提示词不能为空"));
}
return null;
}
@PostMapping("/tool/high/getwether")
public ResponseEntity<Response> getWeather(@RequestBody PromptRequest request) {
ResponseEntity<Response> checkRlt = check(request);
if (checkRlt != null) {
return checkRlt;
}
try {
Object response = qwenService.getWeather(request.getPrompt());
return ResponseEntity.ok(new Response(response.toString()));
} catch (Exception e) {
// 捕获异常并返回错误信息
return ResponseEntity.status(500).body(new Response("请求处理失败: " + e.getMessage()));
}
}
}
- 至此代码就全部写完了,现在把工程运行起来试试,在tools-high-level目录下执行以下命令即可启动服务
bash
mvn spring-boot:run
- 用vscode的 REST Client插件发起http请求,参数如下,和前文用提示词指定JSON不同,这里并没有要求LLM返回JSON格式
bash
### 用提示词实现json格式的输出
POST http://localhost:8080/api/qwen/tool/high/getwether
Content-Type: application/json
Accept: application/json
{
"prompt": "深圳气温,简单回答"
}
- 收到响应如下,可见LLM的回复内容准确且精简
bash
HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
Date: Sat, 10 Jan 2026 09:41:58 GMT
Connection: close
{
"result": "深圳当前气温为19.8℃。[from high level getWeather]"
}
- 再看日志,可见LLM第一次响应会提醒业务侧应该执行的函数及其方法,第二次请求就带上了函数结果,这样第二次LLM返回的就是根据题词要求从函数结果中整理出来的内容,这些内容源自函数结果,但是被LLM整理了一番,这就是用户最终拿到的结果
bash
09:43:50.182 [http-nio-8080-exec-3] INFO c.b.config.LangChain4jConfig - 发到LLM的请求: [UserMessage { name = null, contents = [TextContent { text = "深圳气温,简单回答" }], attributes = {} }]
09:43:52.259 [http-nio-8080-exec-3] INFO c.b.config.LangChain4jConfig - LLM响应, 执行函数[getWeather], 函数入参 : {"arg0": "广东", "arg1": "深圳"}
09:43:52.260 [http-nio-8080-exec-3] INFO c.bolingcavalry.service.WeatherTools - 调用天气接口:https://cn.apihz.cn/api/tianqi/tqyb.php?id=10011856&key=b860cf8c32bc224c1003078105ef43e4&sheng=%E5%B9%BF%E4%B8%9C&place=%E6%B7%B1%E5%9C%B3
09:43:52.692 [http-nio-8080-exec-3] INFO c.b.config.LangChain4jConfig - 发到LLM的请求: [UserMessage { name = null, contents = [TextContent { text = "深圳气温,简单回答" }], attributes = {} }, AiMessage { text = null, thinking = null, toolExecutionRequests = [ToolExecutionRequest { id = "call_86d916ea88574992a4d0d533", name = "getWeather", arguments = "{"arg0": "广东", "arg1": "深圳"}" }], attributes = {} }, ToolExecutionResultMessage { id = "call_86d916ea88574992a4d0d533" toolName = "getWeather" text = "{
"code" : 200,
"guo" : "中国",
"sheng" : "广东",
"shi" : "深圳",
"name" : "深圳",
"weather1" : "晴",
"weather2" : "多云",
"wd1" : 21,
"wd2" : 11,
"winddirection1" : "无持续风向",
"winddirection2" : "东北风",
"windleve1" : "微风",
"windleve2" : "3~4级",
"weather1img" : "https://rescdn.apihz.cn/resimg/tianqi/qing.png",
"weather2img" : "https://rescdn.apihz.cn/resimg/tianqi/duoyun.png",
"lon" : 114.0,
"lat" : 22.54,
"uptime" : "2026-01-10 20:00:00",
"nowinfo" : {
"precipitation" : 0.0,
"temperature" : 19.8,
"pressure" : 1012,
"humidity" : 27,
"windDirection" : "东北风",
"windDirectionDegree" : 6,
"windSpeed" : 1,
"windScale" : "微风",
"feelst" : 18.9,
"uptime" : "2026/01/10 17:05"
},
"alarm" : null
}" }]
09:43:53.994 [http-nio-8080-exec-3] INFO c.b.config.LangChain4jConfig - LLM响应, 纯文本 : 深圳当前气温为19.8℃。
- 至此,函数调用的知识点就全部学习完了,可见实时接口+LLM理解能力的组合还是非常高效的,希望本文能给您一些参考,助力你的工具能力落地