中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):SIGKDD 2026

SIGKDD 2026

KDD is the premier Data Science and AI conference, hosting both a Research and an Applied Data Science Track. The conference will take place from August 9 to 13, 2026, in Jeju, Korea.

重要信息

CCF推荐:A(数据库/数据挖掘/内容检索)

录用率:18.4%(365/1988,2025年)

时间地点:2026年8月9日-济州·韩国

截稿时间:2026年2月8日

大会官网:https://kdd2026.kdd.org/

Call for Papers

Foundations of Knowledge Discovery and Data Science. Submissions are invited to discuss core models, algorithms, and theoretical insights for knowledge discovery.

Modern AI and Big Data. Submissions are invited to elaborate on the intersection of AI and massive data repositories.

Trustworthy and Responsible Data Science. Submissions are invited to feature techniques and frameworks that ensure responsible data use, management, and analysis.

Systems for Data Science and Scalable AI. Submissions that detail new architectures, systems, and infrastructures for large-scale data analysis and machine learning (e.g., distributed computing, federated learning, cloud-based systems) are invited.

Data Science Applications. Submissions are invited for innovative data science and artificial intelligence (AI) applications.

Submission Guidelines

Maximum authorship. In the research track, the number of submissions allowed per author is limited to 7 (seven) maximum per cycle.

Anonymity. The review process for the research track will be double-blind. The submitted document should omit any author names, affiliations, or other identifying information.

Formatting Requirements. Submissions must be in English, in double-column format, and must adhere to the ACM template and format (also available in Overleaf); Word users may use the Word Interim Template. The recommended setting for LaTeX is:

\documentclass[sigconf,anonymous,review]{acmart}

Submissions must be a single PDF file: 8 (eight) content pages as main paper, followed by references and an optional Appendix that has no page limits. The Appendix can contain details on reproducibility, proofs, pseudo-code, etc. The first 8 pages should be self-contained, since reviewers are not required to read past that.

相关推荐
小鸡吃米…9 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec9 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_9 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝9 小时前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha9 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
方见华Richard9 小时前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿9 小时前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c9 小时前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全
学电子她就能回来吗10 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow10 小时前
model training platform
人工智能