Datawhale26年1月组队学习:Agentic AI+Task2反思设计模式

使用外部反馈[Using external feedback]

在构建AI智能体工作流时,单纯的"自我反思"存在性能瓶颈。真正的突破在于引入外部反馈(External Feedback)。这不仅能打破性能天花板,还能让系统获得全新的、更强大的信息源,从而实现质的飞跃。

外部反馈的案例
1、避免提及竞争对手:模型有时会在文案中不必要地提及竞争对手的名字(如 "Our company's shoes are better than RivalCo")。

外部反馈工具:编写一个代码工具,使用正则表达式对模型的输出进行模式匹配,自动检测是否包含竞争对手名称。

反思流程:

(1)模型生成初稿。

(2)工具扫描文本,发现"RivalCo"。

(3)将"检测到竞争对手名称"的反馈信息传回给模型。

(4)模型基于此反馈,重新撰写一份不提及竞争对手的新版本。

2、事实核查:模型生成的历史内容可能存在不准确之处(如 "The Taj Mahal was built in 1648")。

外部反馈工具:调用网络搜索API,查询关于泰姬陵建造时间的权威资料。

反思流程:

模型生成初稿。

工具发起网络搜索,返回结果:"泰姬陵于1631年下令建造,1648年完工"。

将搜索结果作为额外输入,提供给反思模型。

模型基于更精确的历史事实,重写文本,使其更准确。

3、遵守字数限制:模型生成的博客文章或摘要常常超出预设的字数上限。

外部反馈工具:开发一个简单的字数统计工具。

反思流程:

模型生成初稿。

工具统计字数,发现"超过字数限制"。

将"当前字数"和"字数限制"等信息作为反馈,传回给模型。

模型基于此反馈,压缩或精简内容,重新生成符合字数要求的版本。

总结:外部反馈的核心价值

(1)打破信息孤岛:外部反馈让模型能够接触到其训练数据之外的新鲜、实时、客观的信息。

(2)解决模型固有缺陷:对于模型不擅长的任务(如精确计数、事实核查),外部工具可以完美弥补。

(3)实现闭环优化:形成"生成->执行/检查-> 获取反馈->反思改进"的自动化闭环,大幅提升工作效率和输出质量。

(4)学习系统化地让模型调用外部工具,是构建强大智能体应用的关键。

相关推荐
阿蒙Amon5 小时前
TypeScript学习-第10章:模块与命名空间
学习·ubuntu·typescript
AI绘画哇哒哒5 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
戌中横6 小时前
JavaScript——预解析
前端·javascript·学习
●VON6 小时前
React Native for OpenHarmony:2048 小游戏的开发与跨平台适配实践
javascript·学习·react native·react.js·von
ZH15455891317 小时前
Flutter for OpenHarmony Python学习助手实战:自动化脚本开发的实现
python·学习·flutter
xcLeigh7 小时前
Python入门:Python3 requests模块全面学习教程
开发语言·python·学习·模块·python3·requests
xcLeigh7 小时前
Python入门:Python3 statistics模块全面学习教程
开发语言·python·学习·模块·python3·statistics
GHL2842710907 小时前
分析式AI学习
人工智能·学习·ai编程
lpruoyu8 小时前
【Android第一行代码学习笔记】Android架构_四大组件_权限_持久化_通知_异步_服务
android·笔记·学习
野犬寒鸦8 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法