指纹识别考勤打卡系统 - 完整源码项目

本系统是一个基于深度学习的指纹识别考勤打卡应用,通过PyQt5构建的图形界面可以实现指纹图像的识别、考勤管理和数据统计功能。

项目包含完整的源码、数据集、模型文件、各种可视化图表(精度、损失、混淆矩阵等)、项目说明文档。适用于本科研究生设计、学习交流使用,项目为个人原创,禁止商用!

1、项目概述

企业级指纹识别考勤打卡系统,采用MobileNetV2深度学习模型,支持500人的指纹识别,验证准确率56.5%。系统界面美观现代,操作简单直观,适合企业、学校、工厂等场景的考勤管理需求。

2、核心功能

用户管理系统:安全的注册登录机制,密码加密存储,多用户权限管理。

指纹识别打卡:支持指纹图片上传识别,自动识别人员ID,实时显示识别置信度,智能打卡状态判断。

考勤规则设置:自定义上下班时间,自动判断打卡状态。上班前或下班后打卡为成功,上班后下班前打卡为迟到。

历史记录管理:完整的打卡记录查询,包含人员ID、打卡状态、置信度、打卡时间、图片路径等信息。

模型管理:支持最佳模型和最新模型切换,实时显示模型信息,自动加载和切换。

3、技术亮点

深度学习架构:采用PyTorch框架,MobileNetV2预训练模型,支持GPU加速推理,500类别分类,训练数据20000张指纹图像。

模型性能:最佳验证准确率56.5%,Precision 0.58,Recall 0.55,F1 Score 0.55。

界面设计:现代化UI设计,渐变色彩搭配,响应式布局,操作流畅,用户体验优秀。

数据存储:JSON格式轻量级数据库,用户数据、打卡记录、系统设置分类管理,数据持久化。

4、项目内容

完整源码:main.py主程序、model.py模型定义、database.py数据管理、train.py训练脚本。

数据集:20000张指纹图像数据,500个不同人员的指纹样本,标准化数据格式。

模型文件:预训练模型、最佳训练模型、最新训练模型。

可视化图表:损失函数曲线、准确率曲线、精确率召回率F1分数曲线、验证准确率趋势图、混淆矩阵热力图、综合训练指标图。

文档资料:详细项目说明文档、模型调参策略文档、依赖包列表。

5、项目优势

开箱即用:完整项目代码可直接运行,详细文档说明快速上手,预训练模型无需重新训练。

易于定制:模块化代码设计便于二次开发,可自定义考勤规则和界面样式,支持功能扩展。

技术先进:采用最新深度学习技术,代码规范注释清晰,支持GPU加速性能优秀。

相关推荐
Honmaple21 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli721 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所21 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿21 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
zhangfeng113321 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授21 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理
海心焱21 小时前
安全之盾:深度解析 MCP 如何缝合企业级 SSO 身份验证体系,构建可信 AI 数据通道
人工智能·安全
2501_9453184921 小时前
AI证书能否作为招聘/培训标准?2026最新
人工智能
2601_9491465321 小时前
Python语音通知接口接入教程:开发者快速集成AI语音API的脚本实现
人工智能·python·语音识别
韦东东21 小时前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow