embedding model

Embedding Model 通俗解释

你可以把 嵌入模型(Embedding Model) 理解成一个 "语言翻译官":

  • 它把人类能看懂的文本 (比如 "苹果""今天天气好"),翻译成计算机能理解的数字向量 (一串有序的数字,比如 [0.12, -0.34, 0.56, ...]);
  • 这个数字向量就叫 Embedding(嵌入向量) ,向量的长度(维度)由模型决定(比如 nomic-embed-text 是 768 维,OpenAI 的 text-embedding-3-small 是 1536 维);
  • 关键特点:语义相似的文本,生成的向量也相似(比如 "苹果手机" 和 "iPhone" 的向量距离很近,"苹果手机" 和 "香蕉" 的向量距离很远)。

二、Embedding Model 的核心作用

为什么需要它?举几个你能感知到的场景:

  1. 语义搜索:比如你搜 "如何用 Ollama 调用本地模型",即使关键词不完全匹配,也能找到 "本地部署 Ollama 并调用 qwen3:8b" 的内容(因为两者向量相似);
  2. 文本分类 / 聚类:把相似的文本自动归为一类(比如把 "手机卡顿""手机反应慢" 归为 "手机性能问题");
  3. AI 问答的上下文匹配 :比如你问 AI"qwen3:8b 怎么生成嵌入向量",AI 会先把你的问题转成向量,再从知识库中找向量最相似的内容作为答案依据

三、嵌入模型 vs 大语言模型(比如 qwen3:8b)

你之前用的 qwen3:8b大语言模型(LLM),和专门的嵌入模型有明显区别:

类型 核心用途 输出结果 代表模型
嵌入模型(Embedding) 文本转向量、语义相似度计算 固定长度的数字向量 nomic-embed-text、text-embedding-3-small
大语言模型(LLM) 生成文本、问答、创作 自然语言文本 qwen3:8b、gpt-4、llama3
相关推荐
ASS-ASH1 天前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
玄同7655 天前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
Loo国昌5 天前
【垂类模型数据工程】第四阶段:高性能 Embedding 实战:从双编码器架构到 InfoNCE 损失函数详解
人工智能·后端·深度学习·自然语言处理·架构·transformer·embedding
自己的九又四分之三站台11 天前
8:大语言模型是无状态以及大语言模型的基石Embedding
人工智能·语言模型·embedding
laplace012312 天前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
汗流浃背了吧,老弟!12 天前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
Philtell13 天前
Diffusion Model扩散模型中的time embeding的作用
embedding
zhangfeng113313 天前
大语言模型 bpe算法 后面对接的是 one-hot吗 nn.Embedding
算法·语言模型·embedding
程序员泠零澪回家种桔子17 天前
RAG中的Embedding技术
人工智能·后端·ai·embedding