为什么标准化要用均值0和方差1?

为什么标准化要把均值设为0、方差设为1?

先说均值。均值就是平均数,所有观测值加起来除以个数。

μ是均值,n是数据点总数,xᵢ是每个数据点,所以均值就是数据的重心位置。比如均值是20,那20就是平衡点。这不是说所有点到20的距离相等而是说两边的"重量"刚好在20这个位置抵消掉。

而方差衡量的是数据有多分散,定义是每个值与均值偏差的平方的平均值。

n是数据点总数,xᵢ是每个数据点,μ是均值。

那均值为0有什么用?

可以把数据想象成坐标系里的一团"点云"。每个值减去均值(x --- μ)之后,整团云就被平移到了原点位置。数据不再飘在某个角落而是以原点为中心分布。

这对很多机器学习算法都有好处,尤其是用梯度下降的时候。数据居中之后优化过程更平衡、收敛也更快。因为特征要是一开始就偏离原点很远,训练起来会麻烦不少。

那方差为1呢?

这是为了防止某个特征"欺负"其他特征。

举个例子:年龄和薪资两个特征,年龄范围10-70,薪资范围10,000-70,000。直接喂给模型的话,模型会觉得薪资比年龄重要1000倍(数字大嘛)。但这两个特征本来是独立的,凭什么薪资就更重要?

所以标准化就是除以标准差,让所有特征的方差都变成1。这样年龄和薪资就在同一个量级上了,变化幅度差不多。年龄有个小波动,不会因为薪资数字大就被模型无视掉。

可视化效果:

标准化之前,特征1(红色,小尺度)和特征2(蓝色,大尺度)放一起,红色那条几乎看不见。标准化之后,两个特征尺度一致,都能清晰显示出来。模型终于可以公平对待它们了。

什么时候需要标准化?逻辑回归、神经网络、KNN这类用梯度下降的算法,标准化影响最大。

总结一下:

均值为0让数据居中,方差为1让特征尺度统一。两者配合,算法学得更快,也不会偏心某个特征。至于什么时候该用标准化、什么时候该用MinMaxScaler,老实说我也还在摸索。

https://avoid.overfit.cn/post/957b1b35bc1047e185dab369ae8d84ed

作者:vaishnavi

相关推荐
心疼你的一切9 分钟前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒12 分钟前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站14 分钟前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵19 分钟前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰19 分钟前
[python]-AI大模型
开发语言·人工智能·python
陈天伟教授19 分钟前
人工智能应用- 语言理解:04.大语言模型
人工智能·语言模型·自然语言处理
Luhui Dev19 分钟前
AI 与数学的融合:技术路径、应用前沿与未来展望(2026 版)
人工智能
Yvonne爱编码29 分钟前
JAVA数据结构 DAY6-栈和队列
java·开发语言·数据结构·python
chian-ocean31 分钟前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
那个村的李富贵31 分钟前
从CANN到Canvas:AI绘画加速实战与源码解析
人工智能·ai作画·cann