【深度学习教程——01_深度基石(Foundation)】03_计算图是什么?PyTorch动态图机制解密

03_计算图是什么?PyTorch动态图机制解密

本章目标 :告别手算梯度!引入 PyTorch 的核心神经 ------ Autograd (自动微分) 系统。我们将看到 Tensor 如何自动记录历史,并一键计算所有梯度。


📖 目录

  1. 从手动挡到自动挡
  2. Tensor:不只是数组
  3. 动态图机制 (Dynamic Computational Graph)
  4. [实战:用 PyTorch 重写线性回归](#实战:用 PyTorch 重写线性回归)
  5. [关键细节:zero_grad 的必要性](#关键细节:zero_grad 的必要性)

1. 从手动挡到自动挡

上一章,我们手动推导了 L o s s = ( x ⋅ w − y ) 2 Loss = (x \cdot w - y)^2 Loss=(x⋅w−y)2 的梯度公式。

PyTorch 的出现,就是为了把我们带入**"自动挡"**时代。你只管写前向传播(怎么算 Loss),PyTorch 自动帮你算反向传播(怎么求梯度)。


2. Tensor:不只是数组

PyTorch 的核心数据结构是 Tensor。它看起来像 NumPy 的数组,但它多带了三个关键"挂件":

  1. data: 存储具体的数值。
  2. grad: 存储计算出来的梯度。
  3. grad_fn : 记录 "我是怎么来的" (比如通过乘法算出来的,记为 MulBackward)。

3. 动态图机制 (Dynamic Computational Graph)

PyTorch 采用的是 动态图 (Define-by-Run) 机制。

这意味着计算图不是预先定义好的(像 TensorFlow 1.x),而是在你运行代码的那一刻动态构建的

这意味着 :你可以用 Python 的 iffor 循环任意控制网络结构,PyTorch 都能照单全收。


4. 实战:用 PyTorch 重写线性回归

让我们把第1章的代码用 PyTorch 重写一遍。注意观察代码量的急剧减少。

python 复制代码
import torch

# 1. 准备数据
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# 2. 初始化权重 (这就是我们的 Model)
# 只要是模型参数,都需要 requires_grad=True
w = torch.tensor([1.0], requires_grad=True)

# 3. 前向传播函数
def forward(x):
    return x * w  # 这里的 * 是 Tensor 乘法,会自动构建计算图

# 4. 损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

# 5. 训练循环
print("Predict (before training)", 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        # A. 前向计算 Loss
        l = loss(x, y)

        # B. 【魔法步骤】反向传播
        l.backward() # 自动计算梯度存入 w.grad

        print(f"\tgrad: {x}, {y}, {w.grad.item():.2f}")

        # C. 更新权重
        # w.data 也就是只修改数值,不影响计算图
        w.data = w.data - 0.01 * w.grad.data

        # D. 【重要】清空梯度
        w.grad.data.zero_()

    print(f"Epoch: {epoch}, w={w.item():.3f}, loss={l.item():.3f}")

print("Predict (after training)", 4, forward(4).item())

5. 关键细节:zero_grad 的必要性

很多初学者容易栽在这里:为什么要 w.grad.data.zero_()

因为在 PyTorch 的设计中,.backward() 计算出的梯度是累加 (+=) 到 .grad 里的,而不是覆盖。

  • 这在 RNN 或者多任务学习中非常有用。
  • 但在普通的梯度下降中,我们需要的是"这一轮的梯度",所以必须把"上一轮的梯度"清零,否则 w 会跑飞。

➡️ 下一章:04_分类问题怎么解?逻辑回归与交叉熵的由来

相关推荐
java1234_小锋2 小时前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(下)
人工智能·flask·bert·ai大模型
氵文大师2 小时前
PyTorch 性能分析实战:像手术刀一样精准控制 Nsys Timeline(附自定义颜色教程)
人工智能·pytorch·python
2501_941322032 小时前
【医疗AI】基于Mask R-CNN的支气管镜内窥镜目标检测系统实现
人工智能·r语言·cnn
云布道师2 小时前
【云故事探索】NO.19:阿里云×闪剪智能:AI原生重塑视频创作
人工智能·阿里云·ai-native
好奇龙猫2 小时前
【人工智能学习-AI入试相关题目练习-第十七次】
人工智能·学习
档案宝档案管理2 小时前
档案管理系统如何支持多级审批流?自定义节点与角色权限详解
大数据·人工智能·档案·档案管理
一招定胜负2 小时前
OpenCV DNN 实战:快速实现实时性别年龄检测
人工智能·opencv·dnn
林深现海2 小时前
【刘二大人】PyTorch深度学习实践笔记 —— 第二集:线性模型(凝练版)
pytorch·笔记·深度学习
dyxal2 小时前
算子(Operator):深度学习的乐高积木
人工智能·深度学习