基于遗传算法优化极限学习机(GA-ELM)的完整Matlab实现框架,结合数据预处理、模型优化与性能评估,支持分类与回归任务。
一、核心代码实现
1. 数据预处理
matlab
%% 数据加载与清洗(参考)
data = readtable('dataset.csv');
data = rmmissing(data); % 删除缺失值
% 异常值处理(IQR法)
Q = quantile(data(:,1:end-1), [0.25 0.75]);
IQR = Q(2,:) - Q(1,:);
data(:,1:end-1) = min(max(data(:,1:end-1), Q(1,:)-1.5*IQR), Q(2,:)+1.5*IQR);
% 特征标准化(Z-score)
[X, mu, sigma] = zscore(data(:,1:end-1));
Y = data(:,end);
Y = categorical(Y); % 分类任务需标签编码
2. 染色体编码与解码
matlab
%% 染色体编码(参考)
function chromosome = encodeParams(weights, biases)
% 将权重矩阵和偏置向量展平为染色体
w_vector = weights(:);
b_vector = biases(:);
chromosome = [w_vector; b_vector]';
end
%% 染色体解码(参考)
function [weights, biases] = decodeChromosome(chromosome, input_size, hidden_units)
w_len = input_size * hidden_units;
weights = reshape(chromosome(1:w_len), [input_size, hidden_units]);
biases = reshape(chromosome(w_len+1:end), [1, hidden_units]);
end
3. 适应度函数设计
matlab
%% 分类任务适应度(准确率最大化,参考)
function fitness = classificationFitness(chromo, X_train, Y_train, X_val, Y_val)
[weights, biases] = decodeChromosome(chromo, size(X_train,2), 50);
% ELM-AE训练(2层)
H1 = sigmf(X_train * weights + biases, [1 0]);
beta1 = pinv(H1) * X_train; % 重建权重
H2 = sigmf(H1 * beta1, [1 0]);
beta2 = pinv(H2) * Y_train; % 分类层权重
% 验证集预测
val_H1 = sigmf(X_val * weights + biases, [1 0]);
val_H2 = sigmf(val_H1 * beta1, [1 0]);
pred = val_H2 * beta2;
[~, idx] = max(pred, [], 2);
acc = mean(idx == vec2ind(Y_val'));
fitness = acc; % 最大化准确率
end
%% 回归任务适应度(MSE最小化,参考)
function fitness = regressionFitness(chromo, X_train, Y_train, X_val, Y_val)
[weights, biases] = decodeChromosome(chromo, size(X_train,2), 20);
H = sigmf(X_train * weights + biases, [1 0]);
beta = pinv(H') * Y_train; % 输出层权重
% 预测与误差计算
Y_pred = H' * beta;
fitness = mean((Y_pred - Y_val).^2); % MSE
end
4. 遗传算法优化主流程
matlab
%% GA参数设置(参考)
options = optimoptions('ga', ...
'PopulationSize', 50, ...
'MaxGenerations', 100, ...
'CrossoverFraction', 0.8, ...
'MutationFcn', @mutationadaptfeasible, ...
'SelectionFcn', @selectiontournament, ...
'PlotFcn', @gaplotbestf);
% 变量边界(权重[-1,1], 偏置[0,1])
input_size = size(X_train,2);
hidden_units = 50;
lb = [-ones(1, input_size*hidden_units), zeros(1, hidden_units)];
ub = [ones(1, input_size*hidden_units), ones(1, hidden_units)];
% 运行GA优化(分类任务示例)
fitnessFcn = @(ch) classificationFitness(ch, X_train, Y_train, X_val, Y_val);
[best_chromo, best_fitness] = ga(fitnessFcn, ...
length(lb), [], [], [], [], lb, ub, [], options);
5. 模型训练与预测
matlab
%% 最优参数解码与模型训练
[best_weights, best_biases] = decodeChromosome(best_chromo, input_size, hidden_units);
model = trainELM(X_train, Y_train, best_weights, best_biases); % 自定义训练函数
%% 测试集预测(分类任务)
[~, Y_pred] = max(predictELM(model, X_test), [], 2);
accuracy = sum(Y_pred == Y_test) / numel(Y_test);
fprintf('测试准确率: %.2f%%
', accuracy*100);
二、关键优化策略
1. 自适应遗传算子
-
交叉操作:采用算术交叉保留优质基因(参考)
matlabfunction [child1, child2] = arithmeticCrossover(parent1, parent2) alpha = rand(size(parent1)); child1 = alpha .* parent1 + (1-alpha) .* parent2; child2 = (1-alpha) .* parent1 + alpha .* parent2; end -
变异操作:非均匀扰动增强局部搜索(参考)
matlabfunction mutant = nonUniformMutation(chromo, iter, max_iter) delta = 0.1 * (1 - (iter/max_iter)^2); % 动态步长 r = rand(size(chromo)); mutant = chromo + delta * sign(r-0.5) .* sqrt(iter/max_iter); end
2. 正则化防过拟合
在ELM-AE重建中引入L2正则化(参考):
matlab
beta = (H'*H + 0.01*eye(size(H,2))) \ (H'*X); % λ=0.01
3. 混合优化策略
结合爬山法(HC)局部优化精英个体(参考):
matlab
function best_sol = hillClimbing(sol, fitness, step_size, max_iter)
current_sol = sol;
for step = 1:max_iter
neighbor = current_sol + step_size * randn(size(sol));
if fitness(neighbor) < fitness(current_sol)
current_sol = neighbor;
end
end
best_sol = current_sol;
end
三、性能评估与可视化
matlab
%% 多指标评估(分类任务)
function [acc, F1, kappa] = evaluatePerformance(Y_true, Y_pred)
CM = confusionmat(Y_true, Y_pred);
acc = sum(diag(CM)) / sum(CM(:));
prec = diag(CM) ./ sum(CM,1)';
rec = diag(CM) ./ sum(CM,2);
F1 = mean(2*(prec.*rec)./(prec+rec));
kappa = (sum(diag(CM)) - sum(sum(CM,1).*sum(CM,2))/sum(CM(:))) / (1 - sum(sum(CM,1).*sum(CM,2))/sum(CM(:)));
end
%% 结果可视化
plotconfusion(Y_test, Y_pred); % 混淆矩阵
bar([acc, F1]); % 分类指标对比
四、应用场景扩展
-
工业预测(参考)
matlab% 核极限学习机(KELM)优化示例 model = fitKELM(X_train, Y_train, 'KernelFunction', 'rbf', 'KernelScale', 'auto'); -
时间序列分析(参考)
matlab% 结合ELMAN神经网络的GA优化 net = newelm(X_train', Y_train', hidden_units, {'tansig','purelin'}, 'trainlm');
参考代码 遗传算法优化的极限学习机模型 www.youwenfan.com/contentcsq/46222.html
五、注意事项
-
计算效率 :大规模数据建议使用并行计算(
parfor)或GPU加速。 -
超参数调优:通过贝叶斯优化确定GA参数(如种群大小、交叉率)。
-
可解释性:结合SHAP值分析特征重要性(需额外工具箱)。