Large Language Model(LLM)应用开发学习实践(三)

一、LLM Prompt Engineering学习(Andrew Ng & OpenAI)

(一)Principles of Prompting

Write clear and specific instructions(clear ≠ short)

  1. Use delimiters.Such as Triple quotes """,Triple backticks ''',Triple dashes ---,Angle brackets<> and XML tags <tag></tag>.(可以让输入指令更为明确,内容与指令区分)

  2. Ask for structured output,Such as HTML and JSON.(可以让模型回答结果结构化输出)

  3. Check whether conditions are satisfied,Check assumptions required to do the task.(可以让模型根据提供的判断规则输出不同的回答)

  4. Few-shot prompting.Give successful examples of completing tasks,Then ask model to perform the task.(可以让模型根据提供的对话案例保持一致的风格回答问题)
    Give the model time to think

  5. Specify the steps to complete a task(Step 1:...,Step 2:...,...,Step N:...).

  6. Instruct the model to work out its own solution before rushing to a conclusion.

(二)Model Limitations

Hallucination(模型幻觉)

Makes statements that sound plausible but are not true.Reducing hallucinations:

  1. Find relevant information.
  2. Answer the question based on the relevant information.

二、Prompt Engineering Technology 部分总结

关键学习文档[2-3]中,已总结记录了更为完备的提示词工程技巧。下图仅展示常用的部分技巧及适用范围。
(引自关键学习文档[1]:whitepaper-prompt-engineering(Google))

关键学习文档:

1\] [whitepaper-prompt-engineering(Google)](https://www.kaggle.com/whitepaper-prompt-engineering "whitepaper-prompt-engineering(Google)") \[2\] [提示简介 \| Generative AI on Vertex AI \| Google Cloud Documentation](https://docs.cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design?hl=zh-cn "提示简介  |  Generative AI on Vertex AI  |  Google Cloud Documentation") \[3\] [Prompt-Engineering-Guide(dair-ai,GitHub)](https://github.com/dair-ai/Prompt-Engineering-Guide?tab=readme-ov-file "Prompt-Engineering-Guide(dair-ai,GitHub)") \[4\] [Prompt编写原则高级优化技巧-大模型服务平台百炼-阿里云](https://help.aliyun.com/zh/model-studio/prompt-engineering-guide "Prompt编写原则高级优化技巧-大模型服务平台百炼-阿里云") ## 网络参考资料: * [ChatGPT Prompt Engineering for Developer](https://www.youtube.com/watch?v=aaAiUIMA7d4&list=PL_VBedMuZDwACHDeJe_-GBoWJG1B2jyq6&index=1 "ChatGPT Prompt Engineering for Developer") * [提示词工程(Prompt Engineering)- Andrew Ng联合OpenAI](https://www.bilibili.com/video/BV1173jzNELG/?spm_id_from=333.788.videopod.episodes&vd_source=a17b26e6f5dce43e0b4b220aeb13a517&p=2 "提示词工程(Prompt Engineering)- Andrew Ng联合OpenAI") * [2.LangChain提示词工程应用实践_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1w9yEBNESz?spm_id_from=333.788.videopod.episodes&vd_source=a17b26e6f5dce43e0b4b220aeb13a517&p=3 "2.LangChain提示词工程应用实践_哔哩哔哩_bilibili")

相关推荐
Rolei_zl2 小时前
(AI生成) openClaw 的前世今生
llm·aigc
人工智能培训2 小时前
具身智能如何在保证安全的前提下高效探索学习?
语言模型·llm·数据采集·模型量化·多模态学习·具身智能·环境感知
玄同7653 小时前
LangChain v1.0+ 与 FastAPI 中间件深度解析:从概念到实战
人工智能·中间件·langchain·知识图谱·fastapi·知识库·rag
猫头虎3 小时前
2026全网最热Claude Skills工具箱,GitHub上最受欢迎的7大Skills开源AI技能库
langchain·开源·prompt·github·aigc·ai编程·agi
朱元禄3 小时前
AI Agent 实战课程 之 《RAG 闭环实操:RAG 闭环实操(讲师逐字稿)DeepSeek + LangChain》
人工智能·langchain
Elwin Wong3 小时前
浅析DeepSeek-OCR v1&v2
人工智能·大模型·llm·ocr·deepseek
CoderJia程序员甲4 小时前
GitHub 热榜项目 - 日榜(2026-02-03)
git·ai·开源·llm·github
伊甸34 小时前
基于LangChain4j从0到1搭建自己的的AI智能体并部署上线-1
java·langchain·prompt
UQI-LIUWJ6 小时前
Langchain笔记:模型
笔记·langchain