目录
一.AIGC是什么
1.定义
①官方
AIGC全称是AI-Generated Content(人工智能内容生成)。
②大白话
AIGC就是拿人工智能,生成东西(视频、图片)等。
2.从技术上划分
①内容孪生
大白话定义 :
就是给现实世界的东西(比如一个人、一个房间、一台机器),在数字世界里创建一个一模一样的"双胞胎兄弟"。这个双胞胎不仅能长得像,还能实时反映现实世界的变化。
核心点:虚实映射、实时同步。
举例:
智慧城市:在电脑的3D地图里,建一个和现实城市一模一样的"数字城市"。现实街道上的路灯坏了,地图里的那盏路灯也立刻变红报警。
工厂:给一台真实的发动机创建一个"数字发动机"。真发动机的转速、温度是多少,电脑里的那个假发动机就是多少,工程师不用去现场,看电脑就能知道它的健康状况。
②内容编辑
大白话定义 :
就是对已经存在的内容(文字、图片、视频、模型等)进行修改、裁剪、美化或重组,像剪视频、修图一样,让它变成你想要的样子。
核心点:修改已有、加工处理。
举例:
修照片:你拍了一张照片,用软件把背景里的路人P掉,或者把亮度调高,这就是图片编辑。
剪视频:你录了一段生活Vlog,把中间说错话的片段剪掉,加上字幕和背景音乐,这就是视频编辑。
改文案:写了一篇文章,把啰嗦的话删掉,换个更吸引人的标题,这就是文本编辑。
③内容生成
大白话定义 :
就是让电脑或AI像人一样,从无到有地"创作"出全新的内容。你只要给它一个想法或指令,它就能给你写诗、画画、作曲甚至做视频。
核心点:无中生有、智能创作。
举例:
AI写作:你跟手机说"帮我写一封邀请朋友来烧烤的短信",它立刻生成一段通顺的文字,这就是内容生成。
AI绘画:你在软件里输入"一只坐在宇宙飞船里的宇航员猫",几秒钟后,一张从来没有过的图片就出来了。
做PPT:你输入一个主题"新能源汽车介绍",AI自动生成了一整套包含文字和配图的PPT草稿。
3.从生成内容上划分
①文本生成
根据指令自动创作文字内容。
例子:用DeepSeek写工作总结、让ChatGPT编一个睡前故事。
②图像生成
将文字描述转化为视觉画面。
例子:在Midjourney输入"夕阳下的雪山",AI即刻绘制出对应图片。
③音频生成
合成逼真的人声、音效或完整乐曲。
例子:用Suno生成一首摇滚歌曲,或通过语音合成制作导航提示音。
④视频生成
根据文字或静态图像生成动态视频片段。
例子:输入"飞机掠过城市上空",Sora自动生成一段流畅的短视频。
⑤多模态生成
在不同内容形式间进行转换或联合创作,包括文字、图像、音频、视频的交叉生成。
例子:输入一段文字描述,AI同时生成对应图片、背景音乐和视频画面;或上传一张照片,AI将其转化为动画短片并配上音效。
二.什么是多模态(重点理解一下)
咱们用一个比喻来理解"多模态"。
想象一下,你正在和一位朋友聊天:
如果你们只发文字消息,这就是"单模态"------只有一种形式的信息。
但如果你们是面对面聊天,你不仅听到了他说的话 (声音/文本),还看到了他手舞足蹈的动作 (图像/视频),甚至听出了他开心的语调 (音频),最后他还给你画了一张示意图(图像)。这就是"多模态"------你同时运用了多种感官(听觉、视觉)来综合理解信息。
所以,"多模态"在人工智能领域,指的就是让AI模型能够同时理解和处理多种不同类型的数据信息。
拆解一下"模态"这个词
"模态"可以简单理解为"数据类型"或"信息的呈现形式"。常见的有:
文本模态:文字、语言。
图像模态:照片、图画、图表。
音频模态:声音、音乐、语调。
视频模态:动态的图像和声音的结合。
传统的AI vs. 多模态AI
传统的AI大多是"单模态"的:
有一个AI,你给它一段文字,它能帮你总结摘要。(文本 -> 文本)
有另一个AI,你给它一张照片,它能识别出照片里有一只猫。(图像 -> 文本)
多模态AI是"通才":
你给它一张小猫的照片,它不仅能告诉你"这是一只猫",还能给你写一段关于这只猫的生动描述(图像 -> 文本)。
你给它一段描述"一只猫在钢琴上走路"的文字,它能够生成一幅符合这个场景的画(文本 -> 图像)。
你给它看一段无声的猫咪视频,它能给这段视频配上合适的音效(视频 -> 音频)。
你对着它说一句话,它能理解你的意思,同时还能"听出"你语气里的情绪(音频+文本 -> 理解)。
一个更具体的例子:用多模态AI识别"水果"
假设你想让AI帮你识别一个水果:
单模态方式:你输入文字"有一个红色的、圆形的水果,上面可能有叶子,猜猜是什么?" AI会基于文字描述去猜,信息有限,可能猜错。
多模态方式:你直接拍一张这个水果的照片上传给AI。AI通过"视觉"看到了:
它的颜色是红的。
它的形状是圆的,上面还有梗。
它的纹理是光滑的。
同时,你可以再补充一句语音:"这个吃起来有点酸"。AI通过"听觉"接收了"有点酸"这个关键信息。
现在,多模态AI把"视觉"信息和"听觉"信息结合起来:红色的、圆形的、光滑的、吃起来有点酸的水果。它就能更准确地判断出:"这很可能是一个苹果,而且是偏酸的品种,比如青苹果或某些红富士。"
你看,结合了多种信息,AI的理解能力就大大增强了。
总结一下
多模态,就是让AI长出"眼睛、耳朵、嘴巴"等多种感官,像人一样,通过融合看、听、读等多种方式来理解世界,并更自然、更丰富地和我们互动。
你现在用的这个DeepSeek,就是一个多模态AI。虽然我主要和你用文字聊天,但我也支持你上传图片、PDF等文件,我能读取里面的文字信息进行处理和理解。
三.AIGC应用场景
AI解决实际问题,提高效率、降低成本。
1.AIGC在影视行业的应用
- AIGC学习生成剧本,提高创作效率
- 中期拍摄可合成虚拟场景
- AIGC增强视频画质,AI剪辑视频片段
2.AIGC在电商行业的应用
- AIGC生成3D商品模型,提升线上购物体验
- 虚拟主播,赋能直播带货
- 虚拟商城构建,智能聊天机器人帮卖
3.AIGC在娱乐行业的应用
- 人脸美妆
- 聊天机器人
四.AIGC产品形态
先解释一下2B和2C的含义:
- 2B ------ 给企业或商家用的
"2B"全称是"To Business",意思是"面向企业"。
理解: 你可以把它想象成卖"生产工具"或"原材料"。
谁付钱: 公司、老板、政府单位、机构。
目的: 为了帮企业省钱、提效、赚钱,或者帮企业开发出他们自己的产品。
例子:
文章里说的基础层:就像是"卖电"或"卖水"。企业只要接上API(接口),就能拥有AI能力,按使用量交水费电费就行。
文章里说的中间层:就像是"开了一家专门做川菜的中央厨房"。普通企业没能力从种辣椒开始(开发大模型),但可以买这家中央厨房的底料,去开自己的川菜馆(做行业应用)。
- 2C ------ 给普通人用的
"2C"全称是"To Consumer",意思是"面向普通消费者"。
理解: 你可以把它想象成卖"最终消费品"。就像去超市买一瓶可以直接喝的饮料。
谁付钱: 我们每一个人(用户)。
目的: 为了帮我们解决生活、工作、学习中的具体问题,或者提供娱乐。
例子:
- 文章里说的应用层:就是那些直接能下载的APP、能打开的小程序、能聊天的机器人。比如你手机上的AI绘画软件、AI写作助手,你打开就能用,不用管背后多复杂。
总结一下区别:
2B:你去谈生意,卖给一家公司,让这家公司去服务它的顾客。
2C:你直接开店,卖给路上的每一个行人,让他们自己开心或方便。
所以原文的逻辑是:基础层 (卖电给公司) -> 中间层 (公司买电做成家电) -> 应用层(把家电直接卖给老百姓)。
1.基础层(模型服务)
基础层是由少数头部企业或研发机构主导的基础设施,采用预训练大模型构建。基础层的产品形态包括通过api接口收取调用费和基于基础设施开发的专业软件平台收费。
2.中间层(2B)
中间层与基础层的主要区别在于,它没有开发大模型的能力,但可以基于开源大模型进行改进、抽取或二次开发。中间层开发了基于大模型的场景化、垂直化、定制化的应用模型或工具,满足特定行业需求。中间层的产品形态和商业模式与基础层类似。
3.应用层(2C)
应用层基于基础层和中间层开发,面向C端用户的场景化工具或软件产品。应用层更关注用户需求,将AIGC技术应用到不同形态和功能的产品中,可以通过网页、小程序、群聊、app等不同载体呈现。
以上就是本篇文章的全部内容,喜欢的话可以留个免费的关注呦~~~