LeetCode 热题 100 之 76.最小覆盖子串

此题难度为HARD!

解题思路 💡

这道题是经典的 滑动窗口(双指针) 问题,核心是通过左右指针动态调整窗口大小,在 O (n) 时间复杂度内找到包含 t 所有字符的最短子串。

  1. 统计需求 :用数组记录 t 中每个字符的出现次数(need),并统计需要满足的不同字符数量(required)。

  2. 扩展窗口 :右指针向右移动,将字符加入当前窗口,更新窗口内字符计数(window),当窗口满足所有字符需求时,尝试收缩左指针。

  3. 收缩窗口:左指针向右移动,尽可能缩小窗口,同时保持窗口仍满足所有字符需求,记录最小窗口的起始位置和长度。

  4. 结果返回:遍历结束后,若存在有效窗口则返回最短子串,否则返回空串。

    public class Solution {
    public String minWindow(String s, String t) {
    // 边界条件处理
    if (s == null || t == null || s.length() == 0 || t.length() == 0 || s.length() < t.length()) {
    return "";
    }

    复制代码
         // 统计t中字符的需求次数和需要满足的不同字符数
         int[] need = new int[128]; // 覆盖所有ASCII英文字符
         int required = 0;
         for (char c : t.toCharArray()) {
             if (need[c] == 0) {
                 required++; // 新增一个需要满足的字符
             }
             need[c]++;
         }
    
         int[] window = new int[128]; // 记录当前窗口内字符的出现次数
         int left = 0, right = 0; // 左右指针
         int valid = 0; // 当前窗口中满足need的字符数
         int minLen = Integer.MAX_VALUE; // 最小窗口长度
         int start = 0; // 最小窗口的起始索引
    
         while (right < s.length()) {
             char c = s.charAt(right);
             if (need[c] > 0) { // 仅处理t中需要的字符
                 window[c]++;
                 // 当窗口中该字符的数量达到需求时,valid+1
                 if (window[c] == need[c]) {
                     valid++;
                 }
             }
             right++; // 右指针扩展窗口
    
             // 当窗口满足所有字符需求时,尝试收缩左指针
             while (valid == required) {
                 // 更新最小窗口的长度和起始位置
                 if (right - left < minLen) {
                     minLen = right - left;
                     start = left;
                 }
    
                 // 移动左指针,收缩窗口
                 char d = s.charAt(left);
                 if (need[d] > 0) {
                     // 如果该字符的窗口计数刚好等于需求,收缩后会不满足,valid-1
                     if (window[d] == need[d]) {
                         valid--;
                     }
                     window[d]--;
                 }
                 left++;
             }
         }
    
         // 返回结果:若minLen未更新,说明无有效窗口,返回空串
         return minLen == Integer.MAX_VALUE ? "" : s.substring(start, start + minLen);
     }

    }

复杂度分析 📊

  • 时间复杂度:O (n),n 为 s 的长度。每个字符最多被左右指针各访问一次,无嵌套循环。
  • 空间复杂度:O (1),使用的数组大小固定为 128,与输入规模无关。
相关推荐
I_LPL1 小时前
day35 代码随想录算法训练营 动态规划专题3
java·算法·动态规划·hot100·求职面试
DeepModel1 小时前
【回归算法】多项式回归详解
算法·回归
百锦再1 小时前
Java中的日期时间API详解:从Date、Calendar到现代时间体系
java·开发语言·spring boot·struts·spring cloud·junit·kafka
踩坑记录2 小时前
leetcode hot100 78. 子集 递归回溯 medium 位运算法
leetcode
Frostnova丶2 小时前
LeetCode 761. 特殊的二进制字符串
算法·leetcode
A懿轩A2 小时前
【Java 基础编程】Java 枚举与注解从零到一:Enum 用法 + 常用注解 + 自定义注解实战
java·开发语言·python
不吃橘子的橘猫2 小时前
《集成电路设计》复习资料3(电路模拟与SPICE)
学习·算法·集成电路·仿真·半导体
m0_531237172 小时前
C语言-函数递归
算法
tuokuac2 小时前
MyBatis-Plus调用getEntity()触发异常
java·mybatis