决策树分类实战:从数据到模型优化

分类决策树代码实战

代码部分

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split

data=pd.read_excel(r"D:\培训\机器学习\决策树分类\网卡\电信客户流失数据.xlsx",)
# print(data.head())
X=data.drop(["流失状态"],axis=1)
y=data["流失状态"]

train_X,test_X,train_y,test_y=train_test_split(X,y,test_size=0.2,random_state=42)

from imblearn.over_sampling import SMOTE#imblearn这个库里面调用,
oversampler =SMOTE(random_state=0)#保证数据拟合效果,随机种子
train_X, train_y = oversampler.fit_resample(train_X,train_y)#人工拟合数据


from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import cross_val_score
import numpy as np
scores=[]
sd=[4,5,6,7,8,9,10,11,12]
ms=[2,3,4,5,6,7,8,9]
ml=[12,13,14,15,16,17,18]
mn=[9,10,11,12,13,14,15]
sc=0
best=[]
for n in mn:
    for l in ml:
        for p in ms:
            for s in sd:
                lr=DecisionTreeClassifier(criterion="gini",max_depth=s,random_state=42,min_samples_split=p,min_samples_leaf=l,max_leaf_nodes=n)
                score=cross_val_score(lr,train_X,train_y,cv=8,scoring='recall')
                scores_mean=sum(score)/len(score)
                if scores_mean>sc:
                    sc=scores_mean
                    print(scores_mean)
                    scores_mean=scores_mean
                    best=[s,p,l,n]
print(best)

model=DecisionTreeClassifier(criterion="gini",max_depth=best[0],random_state=42,min_samples_split=best[1],min_samples_leaf=best[2],max_leaf_nodes=best[3])

# model=DecisionTreeClassifier(criterion="gini",max_depth=8,random_state=42)
model.fit(train_X,train_y)

from sklearn import metrics

print(metrics.classification_report(train_y,model.predict(train_X)))
print(metrics.classification_report(test_y,model.predict(test_X)))


thresholds=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
recalls=[]
re=0
for i in thresholds: # 缺少冒号(:)和缩进
    y_predict_proba=model.predict_proba(test_X)
    y_predict_proba = pd.DataFrame(y_predict_proba)
    y_predict_proba=y_predict_proba.drop([0],axis=1)
    y_predict_proba[y_predict_proba[[1]] > i] = 1
    y_predict_proba[y_predict_proba[[1]] <= i] = 0
    recall =metrics.recall_score(test_y, y_predict_proba[1])
    recalls.append(recall)
    if recall>re:
        re=recall
        best_threshold=i
    print("{} Recall metric...".format(recall)) # 缺少.format值

from sklearn.metrics import classification_report
print(best_threshold)
# 首先,获取模型预测的正类概率(第二列)
y_pred_proba = model.predict_proba(test_X)[:, 1]

# 根据最优阈值生成预测标签
y_pred_optimal = (y_pred_proba >= best_threshold).astype(int)

# 计算分类报告
report = classification_report(test_y, y_pred_optimal)
print(report)

代码详解

1 导入数据并划分

复制代码
data=pd.read_excel(r"D:\培训\机器学习\决策树分类\网卡\电信客户流失数据.xlsx",)
# print(data.head())
X=data.drop(["流失状态"],axis=1)
y=data["流失状态"]

train_X,test_X,train_y,test_y=train_test_split(X,y,test_size=0.2,random_state=42)

先导入了数据,然后根据数据特征划分特征和标签,然后以2/8划分训练集测试集。

2 过采样

复制代码
from imblearn.over_sampling import SMOTE#imblearn这个库里面调用,
oversampler =SMOTE(random_state=0)#保证数据拟合效果,随机种子
train_X, train_y = oversampler.fit_resample(train_X,train_y)#人工拟合数据

由于数据的不均衡性,我们对少的数据进行过采样,这类方法的讲解在上一篇有提到

3 调参

复制代码
from sklearn.model_selection import cross_val_score
import numpy as np
sd=[4,5,6,7,8,9,10,11,12]
ms=[2,3,4,5,6,7,8,9]
ml=[12,13,14,15,16,17,18]
mn=[9,10,11,12,13,14,15]
sc=0
best=[]
for n in mn:
    for l in ml:
        for p in ms:
            for s in sd:
                lr=DecisionTreeClassifier(criterion="gini",max_depth=s,random_state=42,min_samples_split=p,min_samples_leaf=l,max_leaf_nodes=n)
                score=cross_val_score(lr,train_X,train_y,cv=8,scoring='recall')
                scores_mean=sum(score)/len(score)
                if scores_mean>sc:
                    sc=scores_mean
                    print(scores_mean)
                    scores_mean=scores_mean
                    best=[s,p,l,n]
print(best)

这里我用for循环对下面的四个参数进行调试找出最好的参数。进行交叉验证找出最好

4 建立模型训练

复制代码
model=DecisionTreeClassifier(criterion="gini",max_depth=best[0],random_state=42,min_samples_split=best[1],min_samples_leaf=best[2],max_leaf_nodes=best[3])

# model=DecisionTreeClassifier(criterion="gini",max_depth=8,random_state=42)
model.fit(train_X,train_y)

from sklearn import metrics

print(metrics.classification_report(train_y,model.predict(train_X)))
print(metrics.classification_report(test_y,model.predict(test_X)))

根据上面最好的参数建立模型并训练,然后得出训练集和测试集的报告

5 调阈值

复制代码
thresholds=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
recalls=[]
re=0
for i in thresholds: # 缺少冒号(:)和缩进
    y_predict_proba=model.predict_proba(test_X)
    y_predict_proba = pd.DataFrame(y_predict_proba)
    y_predict_proba=y_predict_proba.drop([0],axis=1)
    y_predict_proba[y_predict_proba[[1]] > i] = 1
    y_predict_proba[y_predict_proba[[1]] <= i] = 0
    recall =metrics.recall_score(test_y, y_predict_proba[1])
    recalls.append(recall)
    if recall>re:
        re=recall
        best_threshold=i
    print("{} Recall metric...".format(recall)) # 缺少.format值

from sklearn.metrics import classification_report
print(best_threshold)
# 首先,获取模型预测的正类概率(第二列)
y_pred_proba = model.predict_proba(test_X)[:, 1]

# 根据最优阈值生成预测标签
y_pred_optimal = (y_pred_proba >= best_threshold).astype(int)

# 计算分类报告
report = classification_report(test_y, y_pred_optimal)
print(report)

这里其实有点歪门邪道了,因为调阈值是在牺牲一个类的情况下,来提高另一个类的召回率。对模型整体性能并没有提高。

例如下面调阈值虽然1的召回率提高了很多,但是0的几乎降为0了,但这个有点过来,需要再调。

但是在某些情况下,例如我们设计一个医院检查疾病的大模型。最重要的就是有病的人一定要检查出来,因为没病的人检查为有病有医生可以复查,没病的可能就直接走了。所以对于这个我们要调阈值,让有病的人更容易被检查出来。

相关推荐
Kyln.Wu9 分钟前
【python实用小脚本-169】『Python』所见即所得 Markdown 编辑器:写完即出网页预览——告别“写完→保存→刷新”三连
开发语言·python·编辑器
爱掉发的小李14 分钟前
Linux 环境下 Docker 安装与简单使用指南
java·linux·运维·c++·python·docker·php
paid槮21 分钟前
机器学习——逻辑回归
人工智能·机器学习·逻辑回归
惜.己1 小时前
selenium获取元素 出现的错误AttributeError: ‘TestPage‘ object has no attribute ‘driver‘
python·selenium·pycharm
LetsonH2 小时前
⭐CVPR2025 FreeUV:无真值 3D 人脸纹理重建框架
人工智能·python·深度学习·计算机视觉·3d
蹦蹦跳跳真可爱5892 小时前
Python----大模型(大模型微调--BitFit、Prompt Tuning、P-tuning、Prefix-tuning、LORA)
人工智能·python·深度学习·自然语言处理·transformer
DONG9132 小时前
Python 中的可迭代、迭代器与生成器——从协议到实现再到最佳实践
开发语言·汇编·数据结构·python·算法·青少年编程·排序算法
golitter.3 小时前
pytorch的 Size[3] 和 Size[3,1] 区别
人工智能·pytorch·python
Q_Q5110082853 小时前
python的驾校培训预约管理系统
开发语言·python·django·flask·node.js·php