文本分类任务Qwen3-0.6B与Bert:实验见解最近在知乎上刷到一个很有意思的提问Qwen3-0.6B这种小模型有什么实际意义和用途。查看了所有回答,有人提到小尺寸模型在边缘设备场景中的优势(低延迟)、也有人提出小模型只是为了开放给其他研究者验证scaling law(Qwen2.5系列丰富的模型尺寸为开源社区验证方法有效性提供了基础)、还有人说4B、7B的Few-Shot效果就已经很好了甚至直接调用更大的LLM也能很好的解决问题。让我比较感兴趣的是有大佬提出小模型在向量搜索、命名实体识别(NER)和文本分类领域中很能打,而另一个被拿来对比的就是Ber