【状态估计】基于卡尔曼滤波器和扩展卡尔曼滤波器用于 INS/GNSS 导航、目标跟踪和地形参考导航研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[2.1 算例1](#2.1 算例1)

[2.2 算例2](#2.2 算例2)

[2.3 算例3](#2.3 算例3)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及数据](#🌈4 Matlab代码及数据)


💥1 概述

EKF 是卡尔曼滤波器在非线性系统中的应用的推广延伸,其离散非线性系统的状态和测量方程表示为:

EKF 原理如图 1 所示。

EKF 主要包含时间更新(预测)与测量更新(校正)两个阶段。 时间更新包含以下部分:

卡尔曼滤波器法原理由射影定理推导而来,能在线性高斯模型的情况下对目标状态做出最优估计,但实际系统多为非线性系统[83]。为解决非线性系统滤波问题,常用处理方法是将其看作一个近似的线性滤波问题。目前应用较多的是 EKF,其核心思想是在滤波值处将非线性函数和进行一阶泰勒级数展开,并忽略其高阶项,得到局部线性化模型,然后再应用 KF 进行滤波估计。

📚 2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3

部分代码:

N = 20; % number of time steps

dt = 1; % time between time steps

M = 100; % number of Monte-Carlo runs

sig_acc_true = [0.3; 0.3; 0.3]; % true value of standard deviation of accelerometer noise

sig_gps_true = [3; 3; 3; 0.03; 0.03; 0.03]; % true value of standard deviation of GPS noise

sig_acc = [0.3; 0.3; 0.3]; % user input of standard deviation of accelerometer noise

sig_gps = [3; 3; 3; 0.03; 0.03; 0.03]; % user input of standard deviation of GPS noise

Q = [diag(0.25*dt^4*sig_acc.^2), zeros(3); zeros(3), diag(dt^2*sig_acc.^2)]; % process noise covariance matrix

R = [diag(sig_gps(1:3).^2), zeros(3); zeros(3), diag(sig_gps(4:6).^2)]; % measurement noise covariance matrix

F = [eye(3), eye(3)*dt; zeros(3), eye(3)]; % state transition matrix

B = [0.5*eye(3)*dt^2; eye(3)*dt]; % control-input matrix

H = eye(6); % measurement matrix

%% true trajectory

x_true = zeros(6,N+1); % true state

a_true = zeros(3,N); % true acceleration

x_true(:,1) = [0; 0; 0; 5; 5; 0]; % initial true state

for k = 2:1:N+1

x_true(:,k) = F*x_true(:,k-1) + B*a_true(:,k-1);

end

%% Kalman filter simulation

res_x_est = zeros(6,N+1,M); % Monte-Carlo estimates

res_x_err = zeros(6,N+1,M); % Monte-Carlo estimate errors

P_diag = zeros(6,N+1); % diagonal term of error covariance matrix

% filtering

for m = 1:1:M

% initial guess

x_est(:,1) = [2; -2; 0; 5; 5.1; 0.1];

P = [eye(3)*4^2, zeros(3); zeros(3), eye(3)*0.4^2];

P_diag(:,1) = diag(P);

for k = 2:1:N+1

%%% Prediction

% obtain acceleration output

u = a_true(:,k-1) + normrnd(0, sig_acc_true);

% predicted state estimate

x_est(:,k) = F*x_est(:,k-1) + B*u;

% predicted error covariance

P = F*P*F' + Q;

%%% Update

% obtain measurement

z = x_true(:,k) + normrnd(0, sig_gps_true);

% measurement residual

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

1\]彭剑,刘东文.改进扩展卡尔曼滤波器的PMSM参数辨识\[J\].现代信息科技,2023,7(10):66-69.DOI:10.19850/j.cnki.2096-4706.2023.10.017. \[2\]廖楷娴. 改进扩展卡尔曼滤波器的永磁同步风力发电机参数辨识\[D\].湖南工业大学,2022.DOI:10.27730/d.cnki.ghngy.2022.000263. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码及数据****

相关推荐
zhangfeng11334 小时前
景观桥 涵洞 城门等遮挡物对汽车安全性的影响数学建模和计算方法,需要收集那些数据
数学建模·汽车
IT猿手4 小时前
2025最新智能优化算法:沙狐优化(Rüppell‘s Fox Optimizer,RFO)算法求解23个经典函数测试集,完整MATLAB代码
android·算法·matlab·迁移学习·优化算法·动态多目标优化·动态多目标进化算法
rit84324994 小时前
MATLAB基于voronoi生成三维圆柱形
开发语言·人工智能·matlab
微光-沫年5 小时前
141-CEEMDAN-VMD-Transformer-BiLSTM-ABKDE多变量区间预测模型!
算法·matlab·回归
Akangya6 小时前
Matlab-Simulink之步长
matlab
Python大数据分析@2 天前
Origin、MATLAB、Python 用于科研作图,哪个最好?
开发语言·python·matlab
牛马baby2 天前
MATLAB下载安装教程(附安装包)2025最新版(MATLAB R2024b)
开发语言·matlab
Evand J2 天前
【MATLAB例程】AOA与TDOA混合定位例程,适用于三维环境、4个锚点的情况,附下载链接
开发语言·matlab
Better Rose2 天前
数学建模从入门到国奖——备赛规划&优秀论文学习方法
数学建模·学习方法
孤狼warrior2 天前
灰色预测模型
人工智能·python·算法·数学建模