吴恩达机器学习2022-Jupyter-用scikitlearn实现逻辑回归

1.1目标

使用 scikit-learn 培训 Logit模型模型。

1.2数据集

python 复制代码
import numpy as np

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1])

1.3Fit模型

下面的代码导入了 scikit-learn 的 Logit模型模型。您可以通过调用 fit 函数将此模型适合于训练数据。

python 复制代码
from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X, y)

输出:

复制代码
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

1.4预测

通过调用预测函数,您可以看到这个模型所做的预测。

python 复制代码
y_pred = lr_model.predict(X)

print("Prediction on training set:", y_pred)

输出:

复制代码
Prediction on training set: [1 1 1 1 1 1]

1.5计算准确度

您可以通过调用 score 函数来计算这个模型的精度。

python 复制代码
print("Accuracy on training set:", lr_model.score(X, y))

输出:

复制代码
Accuracy on training set: 0.5
相关推荐
子非鱼9217 小时前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
春日见7 小时前
window wsl环境: autoware有日志,没有rviz界面/ autoware起不来
linux·人工智能·算法·机器学习·自动驾驶
是小蟹呀^7 小时前
Focal Loss:解决长尾图像分类中“多数类太强势”的损失函数
人工智能·机器学习·分类
穿过锁扣的风7 小时前
从原理到实战:决策树三大算法(ID3、C4.5、CART)深度解析
大数据·深度学习·神经网络·机器学习
deephub7 小时前
分类数据 EDA 实战:如何发现隐藏的层次结构
人工智能·python·机器学习·数据分析·数据可视化
Godspeed Zhao7 小时前
从零开始学AI8——机器学习1
人工智能·机器学习
小鸡吃米…7 小时前
机器学习中的正则化
人工智能·深度学习·机器学习
CV@CV8 小时前
自动驾驶端到端大模型实战——从原理到工程化落地
人工智能·机器学习·自动驾驶
CV@CV8 小时前
自动驾驶传感器融合技术解析——L4级落地的核心支撑
人工智能·机器学习·自动驾驶
格林威8 小时前
Baumer相机电池极耳对齐度检测:提升叠片工艺精度的 5 个实用方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·视觉检测·工业相机·堡盟相机