吴恩达机器学习2022-Jupyter-用scikitlearn实现逻辑回归

1.1目标

使用 scikit-learn 培训 Logit模型模型。

1.2数据集

python 复制代码
import numpy as np

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1])

1.3Fit模型

下面的代码导入了 scikit-learn 的 Logit模型模型。您可以通过调用 fit 函数将此模型适合于训练数据。

python 复制代码
from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X, y)

输出:

复制代码
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

1.4预测

通过调用预测函数,您可以看到这个模型所做的预测。

python 复制代码
y_pred = lr_model.predict(X)

print("Prediction on training set:", y_pred)

输出:

复制代码
Prediction on training set: [1 1 1 1 1 1]

1.5计算准确度

您可以通过调用 score 函数来计算这个模型的精度。

python 复制代码
print("Accuracy on training set:", lr_model.score(X, y))

输出:

复制代码
Accuracy on training set: 0.5
相关推荐
limenga1022 小时前
TensorFlow Keras:快速搭建神经网络模型
人工智能·python·深度学习·神经网络·机器学习·tensorflow
极客BIM工作室10 小时前
LSTM门控机制:本质是神经元构成的小型网络
网络·机器学习·lstm
大千AI助手11 小时前
多叉树:核心概念、算法实现与全领域应用
人工智能·算法·决策树·机器学习··多叉树·大千ai助手
努力的光头强11 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
AY呀12 小时前
DeepSeek:探索AI大模型与开发工具的全景指南
后端·机器学习
m0_6351292613 小时前
内外具身智能VLA模型深度解析
人工智能·机器学习
双翌视觉13 小时前
机器视觉的车载显示器玻璃覆膜应用
人工智能·机器学习·计算机外设
海边夕阳200614 小时前
【每天一个AI小知识】:什么是逻辑回归?
人工智能·算法·逻辑回归
武子康18 小时前
AI研究-129 Qwen2.5-Omni-7B 要点:显存、上下文、并发与成本
人工智能·深度学习·机器学习·ai·大模型·qwen·全模态
2301_783360131 天前
R语言机器学习系列|随机森林模型特征重要性排序的R语言实现
随机森林·机器学习·r语言