吴恩达机器学习2022-Jupyter-用scikitlearn实现逻辑回归

1.1目标

使用 scikit-learn 培训 Logit模型模型。

1.2数据集

python 复制代码
import numpy as np

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1])

1.3Fit模型

下面的代码导入了 scikit-learn 的 Logit模型模型。您可以通过调用 fit 函数将此模型适合于训练数据。

python 复制代码
from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X, y)

输出:

复制代码
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

1.4预测

通过调用预测函数,您可以看到这个模型所做的预测。

python 复制代码
y_pred = lr_model.predict(X)

print("Prediction on training set:", y_pred)

输出:

复制代码
Prediction on training set: [1 1 1 1 1 1]

1.5计算准确度

您可以通过调用 score 函数来计算这个模型的精度。

python 复制代码
print("Accuracy on training set:", lr_model.score(X, y))

输出:

复制代码
Accuracy on training set: 0.5
相关推荐
gorgeous(๑>؂<๑)4 小时前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
周杰伦_Jay4 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
ytttr8735 小时前
Landweber迭代算法用于一维、二维图像重建
人工智能·算法·机器学习
hongjianMa6 小时前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
面向星辰7 小时前
k均值,密度聚类,层次聚类三种聚类底层逻辑的区别
机器学习·均值算法·聚类
从后端到QT9 小时前
标量-向量-矩阵-基础知识
人工智能·机器学习·矩阵
nju_spy10 小时前
周志华《机器学习导论》第 15 章 规则学习(符号主义学习)
人工智能·机器学习·数理逻辑·序贯覆盖·规则学习·ripper·一阶规则学习
antonytyler10 小时前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程四
人工智能·python·机器学习
机器学习之心12 小时前
NRBO-XGBoost+SHAP分析+新数据预测!机器学习可解释分析不在发愁!提供9种混沌映射方法(tent、chebyshev、singer等)
人工智能·机器学习·nrbo-xgboost
大千AI助手14 小时前
参考先验(Reference Priors)详解:理论与Python实践
人工智能·机器学习·贝叶斯·大千ai助手·参考先验·贝叶斯推断·先验