吴恩达机器学习2022-Jupyter-用scikitlearn实现逻辑回归

1.1目标

使用 scikit-learn 培训 Logit模型模型。

1.2数据集

python 复制代码
import numpy as np

X = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y = np.array([0, 0, 0, 1, 1, 1])

1.3Fit模型

下面的代码导入了 scikit-learn 的 Logit模型模型。您可以通过调用 fit 函数将此模型适合于训练数据。

python 复制代码
from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()
lr_model.fit(X, y)

输出:

复制代码
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

1.4预测

通过调用预测函数,您可以看到这个模型所做的预测。

python 复制代码
y_pred = lr_model.predict(X)

print("Prediction on training set:", y_pred)

输出:

复制代码
Prediction on training set: [1 1 1 1 1 1]

1.5计算准确度

您可以通过调用 score 函数来计算这个模型的精度。

python 复制代码
print("Accuracy on training set:", lr_model.score(X, y))

输出:

复制代码
Accuracy on training set: 0.5
相关推荐
广州智造4 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
ayiya_Oese8 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz9 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
IT古董11 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
小oo呆13 小时前
【学习心得】Jupyter 如何在conda的base环境中其他虚拟环境内核
python·jupyter·conda
lucky_lyovo14 小时前
机器学习-特征工程
人工智能·机器学习
我想睡觉26115 小时前
Python训练营打卡DAY27
开发语言·python·机器学习
Jackson@ML15 小时前
一分钟了解机器学习
人工智能·机器学习
Code哈哈笑16 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL16 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析